16 Introduction Chap. 1

(c) If the formula for erf(x) cannot be expressed in terms of more elementary functions, how is it possible for a subroutine to compute its values?

P1-2.—In 250 B.C.E., the Greek mathematician Archimedes estimated the number π as follows. He looked at a circle with diameter 1, and hence circumference π . Inside the circle he inscribed a square; see Figure P1.2. The perimeter of the square is smaller than the circumference of the circle, and so it is a lower bound for π . Archimedes then considered an inscribed octagon, 16-gon, etc., each time doubling the number of sides of the inscribed polygon, and producing ever better estimates for π . Using 96-sided inscribed and circumscribed polygons, he was able to show that $223/71 < \pi < 22/7$. There is a recursive formula for these estimates. Let p_n be the perimeter of the inscribed polygon with 2^n sides. Then p_2 is the perimeter of the inscribed square, $p_2 = 2\sqrt{2}$. In general

$$p_{n+1} = 2^n \sqrt{2(1 - \sqrt{1 - (p_n/2^n)^2})}$$

Compute p_n for n = 3, 4, ..., 60. Try to explain your results. (This problem was suggested by Alan Cline.)

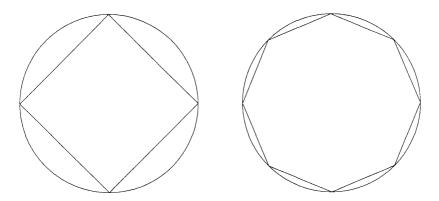


Figure P1.2

- (a) Using this program try to compute $X(0.1, 200, 2000) \approx 0.03$. Comment on the difficulties you encounter.
- (b) One approach is developed in the book by P. Sterbenz (1974). Let B be a large power of 2 chosen so that 2000B will not overflow and B/2000 will not underflow. For example $B = 2^{100}$. If x becomes larger than B we shall divide it by B. Then the true value we are computing is represented by $X \cdot B$. If we use a counter I to count the number of times we divide by B the correct output is

$$X(p, k, N) = X \cdot (B)^{I}, \qquad I \ge 0.$$

Similarly set S = 1/B. If X becomes smaller than S, multiply X by B and subtract one from I. At the conclusion of the computation if I < 0 we may be able to divide X by B I times without underflow and get a meaningful answer. Otherwise the best answer we can get is zero. Modify your program and try it on the problem in (a).

P2–7.—The formula derived in Problem P1–2 to estimate π ,

$$p_{n+1} = 2^n \sqrt{2(1 - \sqrt{1 - (p_n/2^n)^2})},$$

 $p_2 = 2\sqrt{2},$

fails due to a combination of underflow and catastrophic cancellation.

- (a) Explain the failure in the formula.
- (b) The formula can be improved so that the subtraction is eliminated. First write p_{n+1} as

$$p_{n+1}=2^n\sqrt{r_{n+1}},$$

where

$$r_{n+1} = 2(1 - \sqrt{1 - (p_n/2^n)^2}), \qquad r_3 = 2/(2 + \sqrt{2}).$$

Show that

$$r_{n+1} = \frac{r_n}{2 + \sqrt{4 - r_n}}.$$

Use the last iteration to calculate r_n and p_n for n = 3, 4, ..., 60. (This revision was suggested by W. Kahan.)

- (c) Eventually, $4 r_n$ will round to 4, and so the formula derived in (b) is still affected by rounding errors for large values of n. Should this concern us?
- **P2-8.**—Archimedes' method for estimating π can be derived in a different way. Let P(h) denote the perimeter of the n-sided inscribed polygon, where h = 1/n.
 - (a) Using geometry, show that

$$P(h) = (1/h) \times \sin(\pi h)$$
.

Write a program to evaluate this function for n = 3, 6, 12, 24, 48 and 96. Print your estimate and the error for each value of n.