| J|I | ,'I |II .'|I .'I |II .'II ||I

T I ||l Il' T III I|' II
llll III I'I I|I I|| | / |II III |I|
||| | II| II| | I|I | I|| | |

S S S LI SN A S BN
Acqu racy pnd Sta bmty ,
oli Numerlcal Algor thms

f / /

F SEdoND EDITIO&
| /fl f / / .“/ I.'“ /ff / f

Right residual

Unit roundoff

Left residual

Nicholas J. Higham

University of Manchester
Manchester, England

AcCcuracy and Stability

of Numerical Algorithms
SECcOND EDITION

siam
Society for Industrial and Applied Mathematics
Philadelphia

Copyright © 2002 by the Society for Industrial and Applied Mathematics.
10987654321

All rights reserved. Printed in the United States of America. No part of this book
may be reproduced, stored, or transmitted in any manner without the

written permission of the publisher. For information, write to the Society for
Industrial and Applied Mathematics, 3600 University City Science Center,
Philadelphia, PA 19104-2688.

Library of Congress Cataloging-in-Publication Data

Higham, Nicholas J., 1961 -

Accuracy and stability of numerical algorithms / Nicholas]. Higham.—
2nd ed.

p.cm.

Includes bibliographical references.

ISBN 0-89871-521-0

I. Numerical analysis—Data processing. 2. Computer algorithms. |.
Title.

QA297 .H53 2002

519.4°0285’51—dc2I

2002075848

S1AIMN isa registered trademark.

Dedicated to
Alan M. Turing
and
James H. Wilkinson

Contents

List of Figures

List of Tables

Preface to Second Edition

Preface to First Edition

About the Dedication

1 Principles of Finite Precision Computation

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

1.11
1.12

1.13
1.14

1.15
1.16
1.17
1.18
1.19
1.20
1.21

Notation and Background
Relative Error and Significant Digits
Sources of Errors
Precision Versus Accuracy v
Backward and Forward Errors
Conditioning e
Cancellation L o
Solving a Quadratic Equation
Computing the Sample Variance
Solving Linear Equations
1.10.1 GEPP Versus Cramer’s Rule
Accumulation of Rounding Errors
Instability Without Cancellation
1.12.1 The Need for Pivoting

1.12.3 AnlInfinite Sum oL
Increasing the Precision
Cancellation of Rounding Errors
1.14.1 Computing (e* — 1)/
1.14.2 QR Factorization
Rounding Errors Can Be Beneficial
Stability of an Algorithm Depends on the Problem
Rounding Errors Are Not Random
Designing Stable Algorithms
Misconceptions L. e
Rounding Errors in Numerical Analysis
Notes and References
Problems

vii

xvii

xix

xxi

XXV

viii CONTENTS
2 Floating Point Arithmetic 35
2.1 Floating Point Number System 36
2.2 Model of Arithmetic. o0 L. 40
2.3 IEEE Arithmetic 41
2.4 Aberrant Arithmetics 43
2.5 Exact Subtraction Lo oL 45
2.6 Fused Multiply-Add Operation. 46
2.7 Choice of Base and Distribution of Numbers 47
2.8 Statistical Distribution of Rounding Errors 48
2.9 Alternative Number Systems 49
2.10 Elementary Functions 50
2.11 Accuracy Tests 51
2.12 Notes and References 52
Problems e 57

3 Basics 61
3.1 Inner and Outer Products 62
3.2 The Purpose of Rounding Error Analysis 65
3.3 Running Error Analysis, 65
3.4 Notation for Error Analysis 67
3.5 Matrix Multiplication o0 69
3.6 Complex Arithmetic. 71
3.7 Miscellany e 73
3.8 Error Analysis Demystified 74
3.9 Other Approaches 76
3.10 Notes and References 76
Problems 77

4 Summation 79
4.1 Summation Methods 80
4.2 Error Analysis 81
4.3 Compensated Summation 83
4.4 Other Summation Methods 88
4.5 Statistical Estimates of Accuracy 88
4.6 Choiceof Method 89
4.7 Notes and References 90
Problems 91

5 Polynomials 93
5.1 Horner's Method 94
5.2 Evaluating Derivatives 96
5.3 The Newton Form and Polynomial Interpolation 99
5.4 Matrix Polynomials 0. 102
5.5 Notesand References 102

Problems e 104

CONTENTS

6 Norms
6.1 Vector Norms
6.2 Matrix Norms
6.3 The Matrix p-Norm
6.4 Singular Value Decomposition
6.5 Notes and References
Problems
7 Perturbation Theory for Linear Systems
7.1 Normwise Analysis
7.2 Componentwise Analysis
7.3 Scaling to Minimize the Condition Number
7.4 TheMatrix Inverse e
7.5 Extensions e
7.6 Numerical Stability
7.7 Practical Error Boundso L.
7.8 Perturbation Theory by Calculus
7.9 Notes and References
Problems e
8 Triangular Systems
8.1 Backward Error Analysis
8.2 Forward Error Analysis,
8.3 Bounds for theInverse,
8.4 A Parallel Fan-In Algorithm
8.5 Notes and References
8.5.1 LAPACK. e e
Problems
9 LU Factorization and Linear Equations
9.1 Gaussian Elimination and Pivoting Strategies
9.2 LU Factorization
9.3 Error Analysis e
94 TheGrowth Factor
9.5 Diagonally Dominant and Banded Matrices.
9.6 Tridiagonal Matrices
9.7 MoreErrorBounds
9.8 Scaling and Choice of Pivoting Strategy
9.9 Variants of Gaussian Elimination
9.10 A Posteriori Stability Tests
9.11 Sensitivity of the LU Factorization
9.12 Rank-Revealing LU Factorizations
9.13 Historical Perspective, .
9.14 Notes and References
9.141 LAPACK. e
Problems e

ix

105
106
107
112
114
114
115

119
120
122
125
127
128
129
130
132
132
134

139
140
142
147
149
151
153
153

CONTENTS

X
10 Cholesky Factorization 195
10.1 Symmetric Positive Definite Matrices 196
10.1.1 Error Analysis Lo 197
10.2 Sensitivity of the Cholesky Factorization 201
10.3 Positive Semidefinite Matrices oL L. 201
10.3.1 Perturbation Theory 203
10.3.2 Error Analysis oo 205
10.4 Matrices with Positive Definite Symmetric Part 208
10.5 Notesand References 209
10.5.1 LAPACK ot e e 210
Problems 211
11 Symmetric Indefinite and Skew-Symmetric Systems 213
11.1 Block LDLT Factorization for Symmetric Matrices. 214
11.1.1 Complete Pivoting 215
11.1.2 Partial Pivoting 216
11.1.3 Rook Pivoting 219
11.1.4 Tridiagonal Matrices 221
11.2 Aasen’s Method 222
11.2.1 Aasen’s Method Versus Block LDLT Factorization 224
11.3 Block LDLT Factorization for Skew-Symmetric Matrices 225
11.4 Notesand References 226
11.4.1 LAPACK o i e e e 228
Problems 228
12 Iterative Refinement 231
12.1 Behaviour of the Forward Error 232
12.2 Iterative Refinement Implies Stability 235
12.3 Notes and References 240
12.3.1 LAPACK e e e 242
Problems 242
13 Block LU Factorization 245
13.1 Block Versus Partitioned LU Factorization 246
13.2 Error Analysis of Partitioned LU Factorization 249
13.3 Error Analysis of Block LU Factorization 250
13.3.1 Block Diagonal Dominance 251
13.3.2 Symmetric Positive Definite Matrices 255
13.4 Notesand References 256
13.4.1 LAPACK e e 257
Problems 257
14 Matrix Inversion 259
14.1 Use and Abuse of the Matrix Inverse 260
14.2 Inverting a Triangular Matrix 262
14.2.1 Unblocked Methods 262
14.2.2 Block Methods 265
14.3 Inverting a Full Matrix by LU Factorization 267

CONTENTS

14.4
14.5
14.6

14.7

14.3.1 Method A
1432 Method B
14.3.3 Method C
14.3.4 Method D e
14.3.5 Summary e e .
Gauss—Jordan Elimination
Parallel Inversion Methods
The Determinant
14.6.1 Hyman’s Method
Notes and References
14.7.1 LAPACK e
Problems

15 Condition Number Estimation

16

17

15.1
15.2
15.3
15.4
15.5
15.6
15.7

How to Estimate Componentwise Condition Numbers
The p-Norm Power Method
LAPACK 1-Norm Estimator
Block 1-Norm Estimator
Other Condition Estimators
Condition Numbers of Tridiagonal Matrices
Notes and References
15.7.1 LAPACK oo
Problems

The Sylvester Equation

16.1
16.2

16.3
16.4
16.5
16.6

Solving the Sylvester Equation
Backward Error
16.2.1 The Lyapunov Equation
Perturbation Result
Practical Error Bounds
Extensions
Notes and References
16.6.1 LAPACK e
Problems

Stationary Iterative Methods

17.1
17.2

17.3
17.4

17.5
17.6

Survey of Error Analysis
Forward Error Analysis
17.2.1 Jacobi’s Method
17.2.2 Successive Overrelaxation
Backward Error Analysis
Singular Systems L
17.4.1 Theoretical Background
17.4.2 Forward Error Analysis
Stopping an Iterative Method
Notes and References
Problems o

xi

xii CONTENTS
18 Matrix Powers 339
18.1 Matrix Powers in Exact Arithmetic 340
18.2 Bounds for Finite Precision Arithmetic 346
18.3 Application to Stationary Iteration 351
18.4 Notes and References 351
Problems 352

19 QR Factorization 353
19.1 Householder Transformations. 354
19.2 QR Factorization 355
19.3 Error Analysis of Householder Computations 357
19.4 Pivoting and Row-Wise Stability 362
19.5 Aggregated Householder Transformations 363
19.6 Givens Rotations 365
19.7 Tterative Refinement. 368
19.8 Gram-Schmidt Orthogonalization 369
19.9 Sensitivity of the QR Factorization 373
19.10 Notes and References e e e e e e 374
19.10.1 LAPACK e 377
Problems 378

20 The Least Squares Problem 381
20.1 Perturbation Theory 382
20.2 Solution by QR Factorization 384
20.3 Solution by the Modified Gram—Schmidt Method 386
204 The Normal Equations 386
20.5 Iterative Refinement. 388
20.6 The Seminormal Equations 391
20.7 Backward Error 392
20.8 Weighted Least Squares Problems 395
20.9 The Equality Constrained Least Squares Problem 396
20.9.1 Perturbation Theory 396

20.9.2 Methods 397

20.10 Proof of Wedin’s Theorem 400
20.11 Notes and References 402
20.11.1 LAPACK e 405
Problems L 405

21 Underdetermined Systems 407
21.1 Solution Methods 408
21.2 Perturbation Theory and Backward Error 409
21.3 Error Analysis 411
21.4 Notesand References 413
21.4.1 LAPACK. e 414

Problems 414

CONTENTS

22 Vandermonde Systems

22.1
22.2
22.3

224

Matrix Inversion
Primal and Dual Systems
Stability
22.3.1 Forward Error
22.3.2 Residual e
22.3.3 Dealing with Instability
Notes and References
Problems

23 Fast Matrix Multiplication

23.1
23.2

23.3

Methods e
Error Analysis
23.2.1 Winograd’s Method
23.2.2 Strassen’s Method
23.2.3 Bilinear Noncommutative Algorithms
23.24 The3M Method
Notes and References
Problems e

24 The Fast Fourier Transform and Applications

24.1
24.2
24.3

The Fast Fourier Transform
Circulant Linear Systems
Notes and References
Problems e

25 Nonlinear Systems and Newton’s Method

25.1
25.2
25.3
25.4
25.5
25.6

Newton’s Method
Error Analysis e
Special Cases and Experiments
Conditioning
Stopping an Iterative Method,
Notes and References
Problems

26 Automatic Error Analysis

26.1
26.2
26.3

26.4
26.5
26.6

Exploiting Direct Search Optimization
Direct Search Methods
Examples of Direct Search
26.3.1 Condition Estimation
26.3.2 Fast Matrix Inversion
26.3.3 Rootsofa Cubic
Interval Amalysis L
Other Work e
Notes and References
Problems e

xiii

415
416
418
423
424
425
426
428
430

433
434
438
439
440
443
444
446
448

451
452
454
456
457

459
460
461
462
464
467
468
469

Xiv CONTENTS
27 Software Issues in Floating Point Arithmetic 489
27.1 Exploiting IEEE Arithmetic 490
27.2 Subtleties of Floating Point Arithmetic 493
27.3 Cray Peculiarities 493
274 Compilers L e 494
27.5 Determining Properties of Floating Point Arithmetic 494
27.6 Testing a Floating Point Arithmetic 495
27.7 Portability 496
27.7.1 Arithmetic Parameters 496

27.7.2 2 x 2 Problems in LAPACK 497

27.7.3 Numerical Constants 498

27.7.4 Models of Floating Point Arithmetic 498

27.8 Avoiding Underflow and Overflow 499
27.9 Multiple Precision Arithmetic 501
27.10 Extended and Mixed Precision BLAS 503
27.11 Patriot Missile Software Problem 503
27.12 Notes and References 504
Problems e 505

28 A Gallery of Test Matrices 511
28.1 The Hilbert and Cauchy Matrices 512
28.2 Random Matrices L 515
28.3 “Randsvd” Matrices.o 517
284 The Pascal Matrix. 518
28.5 Tridiagonal Toeplitz Matrices 521
28.6 Companion Matrices 522
28.7 Notes and References 523
28.7.1 LAPACK e e e 525
Problems e 525

A Solutions to Problems 527
B Acquiring Software 573
B.1 Internet. e 574
B.2 Netlib. e 574
B.3 MATLAB e 575
B.4 NAG Library and NAGWare F95 Compiler 575

C Program Libraries 577
C.1 Basic Linear Algebra Subprograms 578
C.2 EISPACK e 579
C.3 LINPACK e e e 579
C.4 LAPACK e e 579
C.4.1 Structure of LAPACK 580

D The Matrix Computation Toolbox 583

Bibliography 587

CONTENTS XV

Name Index 657

Subject Index 667

List

1.1
1.2
1.3

1.4
1.5
1.6

2.1

4.1
4.2

5.1

6.1

9.1
9.2

9.3

9.4

14.1
15.1
17.1

18.1
18.2
18.3
18.4
18.5
18.6

of Figures

Backward and forward errors for y = f(z).. 7
Mixed forward-backward error fory = f(z). 8
Forward errors ||z — Z||oo/||Z]lco and relative residuals ||b — AZ||oo/

(lAlloolIZ]loo) versus precision. 18
Absolute error versus precision, t = —log, u, in evaluating (1.8). . 19
Relative errors || Ax — Zk”g/ ||All2 for Givens QR factorization. . . 23
Values of rational function r(z) computed by Horner’s rule. 26

Relative distance from z to the next larger machine number (5 = 2,

t = 24), displaying wobbling precision. 40
Recovering the rounding error. 84
Errors |y(1) —¥,| for Euler’s method with and without compensated

summation. L. oL L e e 87

Computed polynomial values and running and a priori bounds for

Horner’'smethod. oo . 97
Plots of p versus ||Alp, for 1<p<15. 113
Nlustration of rook pivoting. 159
Upper bounds for growth factors p, for partial pivoting, rook piv-

oting, and complete pivoting. 169
Maximum growth factors and average number of comparisons for

15000 random matrices of dimension n = 100:100: 1500. 171
A banded matrix. Lo L 173
Residuals for inverses computed by MATLAB’s inv function. . . . 262

Underestimation ratio for Algorithm 15.4 for 5 x 5 matrix A(f).. . 295

Forward and backward errors for SOR iteration. 323
A typical hump for a convergent, nonnormal matrix. 341
Diverging powers of a nilpotent matrix, Cy4. 341
Infinity norms of powers of 2 x 2 matrix J in (18.2). 343
Computed powers of chebspec matrices. 349
Pseudospectra for chebspec matrices. 350
Pseudospectrum for SOR iteration matrix. 351

xvii

Xviii

19.1

19.2

23.1
23.2

24.1

25.1

26.1

27.1
27.2

28.1
28.2
28.3

Al

LisT oF FIGURES

Householder matrix P timesvector z. 355
Givens rotation, y = G(3,7,0)z. 365
Exponent versus time for matrix multiplication. 437
Errors for Strassen’s method with two random matrices of dimen-

sionn=1024.. 444
Error in FFT followed by inverse FFT. 454
Newton’s method withZ=wandZ =% 465

The possible steps in one iteration of the MDS method when n = 2. 475

Rational function 7. 491
Error in evaluating rational functionr». 492
spy(rem(pascal(32),2))., 522
Pseudospectra of compan(poly(A)). 524
Pseudospectra of 32 x 32 pentadiagonal Toeplitz matrices. 526

log(1 + z) evaluated using MATLAB’s log and using the formula
(AL)e e e, 529

List

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5

4.1

6.1
6.2

7.1

7.2

9.1
9.2
9.3

12.1
12.2
12.3

13.1

14.1
14.2
14.3
14.4
14.5
14.6

17.1
17.2
17.3

of Tables

Computed approximations f, = fI((1+1/n)") toe =2.71828.....
Computed values of (e* — 1)/z from Algorithms 1 and 2.
Results from GE without pivoting on an upper Hessenberg matrix.

Floating point arithmetic parameters.
IEEE arithmetic exceptions and default results.
Test arithmetics.
Sinetest. e
Exponentation test. L.

Mean square errors for nonnegative ;.

Constants a,q such that ||z]l, < apgllzllg, z€C™ L . o L 0oL
Constants apq such that ||Alp < apgllAllg, A€ CT™ ™

Four classes of perturbations and the corresponding condition num-

Classes of matrices for which p, = O(1) for GE without pivoting. .
Times for solution of a linear system of ordern.
Records for largest dense linear systems solved.

Wy 4y, Values for A = gallery(Corthog’,25).
W Al bl values for A = gallery(’clement’,50)..
w) o Values for A =gfpp(50).

Stability of block and point LU factorization.

Backward errors 7,4 ,(%) for the co-norm.
Mflop rates for inverting a triangular matrix on a Cray 2.
Mflop rates for inverting a full matrixona Cray 2.
Times (minutes and seconds) for inverting an n X n matrix.
Additional timings for inverting an n x n matrix.
GIEforUz =b. o

Dates of publication of selected iterative methods. . B
Results for Jacobi method, a =1/2—-873.
Results for Jacobi method, a = —(1/2—-879).

Xix

15

191

256

19.1

20.1
21.1

22.1
22.2
22.3

27.1
27.2

281
28.2

LisT oF TABLES

Backward errors for QR factorization with no pivoting, row sorting,

and column pivoting on matrix (19.16). 363
LS backward errors and residual for Vandermonde system. 394
Backward errors for underdetermined Vandermonde system. 413
Bounds and estimates for «(V,). 418
Parameters in the three-term recurrence (22.6). 422
Results for dual Chebyshev-Vandermonde-like system. 427
Results from Cholesky factorization. 493
Effect of extended run time on Patriot missile operation. 504

MATLAB functions for generating matrices discussed in this book. 513
Condition numbers of Hilbert and Pascal matrices. 514

Preface to Second Edition

We dare not lengthen this book much more,
lest it be out of moderation and should

stir up men's apathy because of its size.

— AELFRIC, schoolteacher of Cerne Abbas,
later Abbot of Eynsham (c. 995-1020)

In the nearly seven years since I finished writing the first edition of this book
research on the accuracy and stability of numerical algorithms has continued to
flourish and mature. Our understanding of algorithms has steadily improved, and
in some areas new or improved algorithms have been derived.

Three developments during this period deserve particular note. First, the
widespread adoption of electronic publication of journals and the increased prac-
tice of posting technical reports and preprints on the Web have both made research
results more quickly available than before. Second, the inclusion of routines from
state-of-the-art numerical software libraries such as LAPACK in packages such as
MATLAB* and Maple! has brought the highest-quality algorithms to a very wide
audience. Third, IEEE arithmetic is now ubiquitous—indeed, it is hard to find a
computer whose arithmetic does not comply with the standard.

This new edition is a major revision of the book that brings it fully up to
date, expands the coverage, and includes numerous improvements to the original
material. The changes reflect my own experiences in using the book, as well as
suggestions received from readers.

The changes to the book can be summarized as follows.

New Chapters

e Symmetric Indefinite and Skew-Symmetric Systems (Chapter 11). A greatly
expanded treatment is given of symmetric indefinite systems (previously con-
tained in the chapter Cholesky Factorization) and a new section treats skew-
symmetric systems.

e Nonlinear Systems and Newton’s Method (Chapter 25). Results on the lim-
iting accuracy and limiting residual of Newton’s method are given under
general assumptions that permit the use of extended precision in calculating
residuals. The conditioning of nonlinear systems, and termination criteria
for iterative methods, are also investigated.

*MATLAB is a registered trademark of The MathWorks, Inc.
TMaple is a registered trademark of Waterloo Maple Software.

xxii

PREFACE TO SECOND EDITION

New Sections

Fused Multiply-Add Operation (§2.6). The advantages of this operation,
which is included in the Intel IA-64 architecture, are discussed, along with
some subtle issues that it raises.

Elementary Functions (§2.10). We explain why it is difficult to compute
elementary functions in a way that satisfies all the natural requirements,
and give pointers to relevant work.

Matriz Polynomials (§5.4). How to evaluate three different matrix general-
izations of a scalar polynomial is discussed.

More Error Bounds (§9.7). Some additional backward and forward error
bounds for Gaussian elimination (GE) without pivoting are given, leading
to the new result that GE is row-wise backward stable for row diagonally
dominant matrices.

Variants of Gaussian Elimination (§9.9). Some lesser-known variants of GE
with partial pivoting are described.

Rank-Revealing LU Fuactorizations (§9.12). This section explains why LU
factorization with an appropriate pivoting strategy leads to a factorization
that is usually rank revealing.

Parallel Inversion Methods (§14.5). Several methods for matrix inversion on
parallel machines are described, including the Schulz iteration, which is of
wider interest.

Block 1-Norm Estimator (§15.4). An improved version of the LAPACK con-
dition estimator, implemented in MATLAB’s condest function, is outlined.

Pivoting and Row- Wise Stability (§19.4). The behaviour of Householder QR
factorization for matrices whose rows are poorly scaled is examined. The
backward error result herein is the only one I know that requires a particular
choice of sign when constructing Householder matrices.

Weighted Least Squares Problems (§20.8). Building on §19.4, an overall row-
wise backward error result is given for solution of the least squares problem
by Householder QR factorization with column pivoting.

The Equality Constrained Least Squares Problem (§20.9). This section treats
the least squares problem subject to linear equality constraints. It gives a
perturbation result and describes three classes of methods (the method of
weighting, null space methods, and elimination methods) and their numerical
stability.

Extended and Mized Precision BLAS (§27.10). A brief description is given
of these important new aids to carrying out extended precision computations
in a portable way.

xxiii

Other Changes

In the error analysis of QR factorization in the first edition of the book, backward
error bounds were given in normwise form and in a componentwise form that
essentially provided columnwise bounds. I now give just columnwise bounds, as
they are the natural result of the analysis and trivially imply both normwise and
componentwise bounds. The basic lemma on construction of the Householder
vector has been modified so that most of the ensuing results apply for either
choice of sign in constructing the vector. These and other results are expressed
using the error constant ¥,,, which replaces the more clumsy notation -y, used in
the first edition (see §3.4).

Rook pivoting is a pivoting strategy that is applicable to both GE for general
matrices and block LDLT factorization for symmetric indefinite matrices, and it
is of pedagogical interest because it is intermediate between partial pivoting and
complete pivoting in both cost and stability. Rook pivoting is described in detail
and its merits for practical computation are explained. A thorough discussion is
given of the choice of pivoting strategy for GE and of the effects on the method of
scaling. Some new error bounds are included, as well as several other results that
help to provide a comprehensive picture of current understanding of GE.

This new edition has a more thorough treatment of block LDLT factoriza-
tion for symmetric indefinite matrices, including recent error analysis, rook pivot-
ing, and Bunch’s pivoting strategy for tridiagonal matrices. Aasen’s method and
Bunch’s block LDLT factorization method for skew-symmetric matrices are also
treated.

Strengthened error analysis includes results for Gauss—Jordan elimination (The-
orem 14.5, Corollary 14.7), fast solution of Vandermonde systems (Corollary 22.7),
the fast Fourier transform (FFT) (Theorem 24.2), and solution of circulant linear
systems via the FFT (Theorem 24.3).

All the numerical experiments have been redone in the latest version, 6.1, of
MATLAB. The figures have been regenerated and their design improved, where
possible. Discussions of LAPACK reflect the current release, 3.0.

A major effort has gone into updating the bibliography, with the aim of re-
ferring to the most recent results and ensuring that the latest editions of books
are referenced and papers are cited in their final published form. Over 190 works
published since the first edition are cited. See page 587 for a histogram that shows
the distribution of dates of publication of the works cited.

In revising the book I took the opportunity to rewrite and rearrange material,
improve the index, and fine tune the typesetting (in particular, using ideas of
Knuth [745, 1999, Chap. 33]). Several research problems from the first edition have
been solved and are now incorporated into the text, and new research problems
and general problems have been added.

In small ways the emphasis of the book has been changed. For example, when
the first edition was written IEEE arithmetic was not so prevalent, so a number of
results were stated with the proviso that a guard digit was present. Now it is im-
plicitly assumed throughout that the arithmetic is “well behaved” and unfortunate
consequences of lack of a guard digit are given less prominence.

A final change concerns the associated MATLAB toolbox. The Test Matrix
Toolbox from the first edition is superseded by the new Matrix Computation Tool-

xxiv PREFACE TO SECOND EDITION

box, described in Appendix D. The new toolbox includes functions implementing
a number of algorithms in the book—in particular, GE with rook pivoting and
block LDLT factorization for symmetric and skew-symmetric matrices. The tool-
box should be of use for both teaching and research.

I am grateful to Bill Gragg, Beresford Parlett, Colin Percival, Siegfried Rump,
Frangoise Tisseur, Nick Trefethen, and Tjalling Ypma for comments that influ-
enced the second edition.

It has been a pleasure working once again with the SIAM publication staff, in
particular Linda Thiel, Sara Triller Murphy, Marianne Will, and my copy editor,
Beth Gallagher.

Research leading to this book has been supported by grants from the Engineer-
ing and Physical Sciences Research Council and by a Royal Society Leverhulme
Trust Senior Research Fellowship.

The tools used to prepare the book were the same as for the first edition, except
that for TgX-related tasks I used MikTEX (http://www.miktex.org/), including
its excellent YAP previewer.

Manchester Nicholas J. Higham
February 2002

Preface to First Edition

It has been 30 years since the publication of Wilkinson’s books Rounding Errors
in Algebraic Processes [1232, 1963] and The Algebraic Eigenvalue Problem [1233,
1965]. These books provided the first thorough analysis of the effects of rounding
errors on numerical algorithms, and they rapidly became highly influential classics
in numerical analysis. Although a number of more recent books have included
analysis of rounding errors, none has treated the subject in the same depth as
Wilkinson.

This book gives a thorough, up-to-date treatment of the behaviour of numeri-
cal algorithms in finite precision arithmetic. It combines algorithmic derivations,
perturbation theory, and rounding error analysis. Software practicalities are em-
phasized throughout, with particular reference to LAPACK. The best available
error bounds, some of them new, are presented in a unified format with a minimum
of jargon. Historical perspective is given to provide insight into the development of
the subject, and further information is provided in the many quotations. Pertur-
bation theory is treated in detail, because of its central role in revealing problem
sensitivity and providing error bounds. The book is unique in that algorithmic
derivations and motivation are given succinctly, and implementation details min-
imized, so that attention can be concentrated on accuracy and stability results.
The book was designed to be a comprehensive reference and contains extensive
citations to the research literature.

Although the book’s main audience is specialists in numerical analysis, it will
be of use to all computational scientists and engineers who are concerned about
the accuracy of their results. Much of the book can be understood with only a
basic grounding in numerical analysis and linear algebra.

This first two chapters are very general. Chapter 1 describes fundamental
concepts of finite precision arithmetic, giving many examples for illustration and
dispelling some misconceptions. Chapter 2 gives a thorough treatment of floating
point arithmetic and may well be the single most useful chapter in the book. In
addition to describing models of floating point arithmetic and the IEEE standard,
it explains how to exploit “low-level” features not represented in the models and
contains a large set of informative exercises.

In the rest of the book the focus is, inevitably, on numerical linear algebra,
because it is in this area that rounding errors are most influential and have been
most extensively studied. However, I found that it was impossible to cover the
whole of numerical linear algebra in a single volume. The main omission is the area
of eigenvalue and singular value computations, which is still the subject of intensive
research and requires a book of its own to summarize algorithms, perturbation
theory, and error analysis. This book is therefore certainly not a replacement

XXv

XXVi PREFACE TO FIRST EDITION

for The Algebraic FEigenvalue Problem.

Two reasons why rounding error analysis can be hard to understand are that,
first, there is no standard notation and, second, error analyses are often cluttered
with re-derivations of standard results. In this book I have used notation that I
find nearly always to be the most convenient for error analysis: the key ingredient
is the symbol v,, = nu/(1 — nu), explained in §3.1. I have also summarized many
basic error analysis results (for example, in Chapters 3 and 8) and made use of
them throughout the book. I like to think of these basic results as analogues of the
Fortran BLAS (Basic Linear Algebra Subprograms): once available in a standard
form they can be used as black boxes and need not be reinvented.

A number of the topics included here have not been treated in depth in previ-
ous numerical analysis textbooks. These include floating point summation, block
LU factorization, condition number estimation, the Sylvester equation, powers of
matrices, finite precision behaviour of stationary iterative methods, Vandermonde
systems, and fast matrix multiplication, each of which has its own chapter. But
there are also some notable omissions. I would have liked to include a chapter on
Toeplitz systems, but this is an area in which stability and accuracy are incom-
pletely understood and where knowledge of the underlying applications is required
to guide the investigation. The important problems of updating and downdating
matrix factorizations when the matrix undergoes a “small” change have also been
omitted due to lack of time and space. A further omission is analysis of paral-
lel algorithms for all the problems considered in the book (though blocked and
partitioned algorithms and one particular parallel method for triangular systems
are treated). Again, there are relatively few results and this is an area of active
research.

Throughout the history of numerical linear algebra, theoretical advances have
gone hand in hand with software development. This tradition has continued with
LAPACK (1987-), a project to develop a state-of-the-art Fortran package for solv-
ing linear equations and eigenvalue problems. LAPACK has enjoyed a synergy with
research that has led to a number of important breakthroughs in the design and
analysis of algorithms, from the standpoints of both performance and accuracy.
A key feature of this book is that it provides the material needed to understand
the numerical properties of many of the algorithms in LAPACK, the exceptions
being the routines for eigenvalue and singular value problems. In particular, the
error bounds computed by the LAPACK linear equation solvers are explained, the
LAPACK condition estimator is described in detail, and some of the software is-
sues confronted by the LAPACK developers are highlighted. Chapter 27 examines
the influence of floating point arithmetic on general numerical software, offering
salutary stories, useful techniques, and brief descriptions of relevant codes.

This book has been written with numerical analysis courses in mind, although
it is not designed specifically as a textbook. It would be a suitable reference for
an advanced course (for example, for a graduate course on numerical linear alge-
bra following the syllabus recommended by the ILAS Education Committee [661,
1993)), and could be used by instructors at all levels as a supplementary text from
which to draw examples, historical perspective, statements of results, and exer-
cises. The exercises (actually labelled “problems”) are an important part of the
book, and many of them have not, to my knowledge, appeared in textbooks before.

xxvii

Where appropriate I have indicated the source of an exercise; a name without a
citation means that the exercise came from private communication or unpublished
notes. Research problems given at the end of some sets of exercises emphasize
that most of the areas covered are still active.

In addition to surveying and unifying existing results (including some that have
not appeared in the mainstream literature) and sometimes improving upon their
presentation or proof, this book contains new results. Some of particular note are
as follows.

1. The error analysis in §5.3 for evaluation of the Newton interpolating poly-
nomial.

2. The forward error analysis for iterative refinement in §12.1.
3. The error analysis of Gauss—Jordan elimination in §14.4.

4. The unified componentwise error analysis of QR factorization methods in
Chapter 19, and the corresponding analysis of their use for solving the least
squares problem in Chapter 20.

5. Theorem 21.4, which shows the backward stability of the QR factorization
method for computing the minimum 2-norm solution to an underdetermined
system.

The Notes and References are an integral part of each chapter. In addition
to containing references, historical information, and further details, they include
material not covered elsewhere in the chapter, and should always be consulted, in
conjunction with the index, to obtain the complete picture.

I have included relatively few numerical examples except in the first chapter.
There are two reasons. One is to reduce the length of the book. The second reason
is because today it so easy for the reader to perform experiments in MATLAB or
some other interactive system. To this end I have made available the Test Matrix
Toolbox, which contains MATLAB M-files for many of the algorithms and special
matrices described in the book; see Appendix D.

This book has been designed to be as easy to use as possible. There are
thorough name and subject indexes, page headings show chapter and section titles
and numbers, and there is extensive cross-referencing. I have adopted the unusual
policy of giving with (nearly) every citation not only its numerical location in the
bibliography but also the names of the authors and the year of publication. This
provides as much information as possible in a citation and reduces the need for
the reader to turn to the bibliography.

A BIBTEX database acc-stab-num-alg.bib containing all the references in
the bibliography is available over the Internet from the bibnet project (which can
be accessed via netlib, described in §B.2).

Special care has been taken to minimize the number of typographical and other
errors, but no doubt some remain. I will be happy to receive notification of errors,
as well as comments and suggestions for improvement.

xxviii PREFACE TO FIRST EDITION

Acknowledgements

Three books, in addition to Wilkinson’s, have strongly influenced my research in
numerical linear algebra and have provided inspiration for this book: Golub and
Van Loan’s Matriz Computations [509, 1996] (first edition 1983), Parlett’s The
Symmetric Eigenvalue Problem [926, 1998] (first published 1980) and Stewart’s
Introduction to Matriz Computations (1065, 1973]. Knuth’s The Art of Computer
Programming books (1973-) [743], [744], have also influenced my style and pre-
sentation.

Jim Demmel has contributed greatly to my understanding of the subject of
this book and provided valuable technical help and suggestions. The first two
chapters owe much to the work of Velvel Kahan; I am grateful to him for giving
me access to unpublished notes and for suggesting improvements to early versions
of Chapters 2 and 27. Des Higham read various drafts of the book, offering sound
advice and finding improvements that had eluded me.

Other people who have given valuable help, suggestions, or advice are

Zhaojun Bai, Brad Baxter, Ake Bjorck, Martin Campbell-Kelly, Shiv-
kumar Chandrasekaran, Alan Edelman, Warren Ferguson, Philip Gill,
Gene Golub, George Hall, Sven Hammarling, Andrzej Kielbasinski,
Philip Knight, Beresford Parlett, David Silvester, Michael Saunders,
Tan Smith, Doron Swade, Nick Trefethen, Jack Williams, and Hongyuan
Zha.

David Carlisle provided invaluable help and advice concerning BTEX 2¢.

Working with STAM on the publication of this book was a pleasure. Special
thanks go to Nancy Abbott (design), Susan Ciambrano (acquisition), Ed Cilurso
(production), Beth Gallagher (copy editing), Corey Gray (production), Mary Rose
Muccie (copy editing and indexing), Colleen Robishaw (design), and Sam Young
(production).

Research leading to this book has been supported by grants from the Engi-
neering and Physical Sciences Research Council, by a Nuffield Science Research
Fellowship from the Nuffield Foundation, and by a NATO Collaborative Research
Grant held with J. W. Demmel. I was fortunate to be able to make extensive use
of the libraries of the University of Manchester, the University of Dundee, Stanford
University, and the University of California, Berkeley.

This book was typeset in INTEX 2¢ using the book document style. The refer-
ences were prepared in BIBTEX and the index with Makelndex. It is difficult to
imagine how I could have written the book without these wonderful tools. I used
the “big” software from the emTEX distribution, running on a 486DX workstation.
I used text editors The Semware Editor (Semware Corporation) and GNU Emacs
(Free Software Foundation) and checked spelling with PC-Write (Quicksoft).

Manchester Nicholas J. Higham
April 1995

About the Dedication

This book is dedicated to the memory of two remarkable English mathematicians,
James Hardy Wilkinson (1919-1986), FRS, and Alan Mathison Turing (1912-
1954), FRS, both of whom made immense contributions to scientific computation.

Turing’s achievements include his paper “On Computable Numbers, with an
Application to the Entscheidungsproblem”, which answered Hilbert’s decidability
question using the abstract device now known as a Turing machine [1164, 1936];
his work at Bletchley Park during World War II on breaking the ciphers of the
Enigma machine; his 1945 report proposing a design for the Automatic Computing
Engine (ACE) at the National Physical Laboratory {1165, 1945]; his 1948 paper
on LU factorization and its rounding error analysis [1166, 1948]; his consideration
of fundamental questions in artificial intelligence (including his proposal of the
“Turing test”); and, during the last part of his life, spent at the University of
Manchester, his work on morphogenesis (the development of structure and form in
an organism). Turing is remembered through the Turing Award of the Association
for Computing Machinery (ACM), which has been awarded yearly since 1966 [3,
1987]. For more about Turing, read the superb biography by Hodges [631, 1983],
described by a reviewer as “one of the finest pieces of scholarship to appear in the
history of computing” [201, 1984]. Hodges maintains the Alan Turing Home Page
at http://www.turing.org.uk/turing/

Wilkinson, like Turing a Cambridge-trained mathematician, was Turing’s assis-
tant at the National Physical Laboratory. When Turing left, Wilkinson managed
the group that built the Pilot ACE, contributing to the design and construction
of the machine and its software. Subsequently, he used the machine to develop
and study a variety of numerical methods. He developed backward error analysis
in the 1950s and 1960s, publishing the books Rounding Errors in Algebraic Pro-
cesses (1232, 1963]* (REAP) and The Algebraic Eigenvalue Problem [1233, 1965)%
(AEP), both of which rapidly achieved the status of classics. (AEP was reprinted
in paperback in 1988 and, after being out of print for many years, REAP is now
also available in paperback.) The AEP was described by the late Professor Leslie
Fox as “almost certainly the most important and widely read title in numerical
analysis”. Wilkinson also contributed greatly to the development of mathematical
software. The volume Handbook for Automatic Computation, Volume II: Linear
Algebra [1246, 1971], co-edited with Reinsch, contains high-quality, properly doc-
umented software and has strongly influenced subsequent software projects such
as the NAG Library, EISPACK, LINPACK, and LAPACK.

Wilkinson received the 1970 Turing Award. In his Turing Award lecture he

'REAP has been translated into Polish [1235, 1967] and German [1237, 196g).
§ AEP has been translated into Russian [1238, 1970].

xXix

XXX ABOUT THE DEDICATION

described life with Turing at the National Physical Laboratory in the 1940s [1240,
1971].

Wilkinson is remembered through SIAM’s James H. Wilkinson Prize in Numer-
ical Analysis and Scientific Computing, awarded every 4 years; the Wilkinson Prize
for Numerical Software, awarded by Argonne National Laboratory, the National
Physical Laboratory, and the Numerical Algorithms Group; and the Wilkinson Fel-
lowship in Scientific Computing at Argonne National Laboratory. For more about
Wilkinson see the biographical memoir by Fox [439, 1987], Fox’s article (438, 1978],
Parlett’s essay [925, 1990], the prologue and epilogue of the proceedings [279, 1990]
of a conference held in honour of Wilkinson at the National Physical Laboratory
in 1987, and the tributes in [29, 1987]. Lists of Wilkinson’s publications are given
in [439, 1987] and in the special volume of the journal Linear Algebra and Its
Applications (88/89, April 1987) published in his memory.

Chapter 1
Principles of Finite Precision
Computation

Numerical precision is the very soul of science.
— SIR D'ARCY WENTWORTH THOMPSON, On Growth and Form (1942)

T here will always be a small but steady demand for error-analysts to ...
expose bad algorithms' big errors and, more important,
supplant bad algorithms with provably good ones.

— WILLIAM M. KAHAN, Interval Arithmetic Options in the
Proposed IEEE Floating Point Arithmetic Standard (1980)

Since none of the numbers which we take out from logarithmic and
trigonometric tables admit of absolute precision,
but are all to a certain extent approximate only,

the results of all calculations performed

by the aid of these numbers can only be approximately true . ..
It may happen, that in special cases the

effect of the errors of the tables is so augmented that

we may be obliged to reject a method,

otherwise the best, and substitute another in its place.

— CARL FRIEDRICH GAUSS!, Theoria Motus (1809)

Backward error analysis is no panacea;
it may explain errors but not excuse them.

— HEWLETT-PACKARD, HP-15C Advanced Functions Handbook (1982)

1Cited in Goldstine [500, 1977, p. 258).

2 PrINCIPLES OF FINITE PRECISION COMPUTATION

This book is concerned with the effects of finite precision arithmetic on numer-
ical algorithms?, particularly those in numerical linear algebra. Central to any
understanding of high-level algorithms is an appreciation of the basic concepts of
finite precision arithmetic. This opening chapter briskly imparts the necessary
background material. Various examples are used for illustration, some of them
familiar (such as the quadratic equation) but several less well known. Common
misconceptions and myths exposed during the chapter are highlighted towards the
end, in §1.19.

This chapter has few prerequisites and few assumptions are made about the
nature of the finite precision arithmetic (for example, the base, number of digits,
or mode of rounding, or even whether it is floating point arithmetic). The second
chapter deals in detail with the specifics of floating point arithmetic.

A word of warning: some of the examples from §1.12 onward are special ones
chosen to illustrate particular phenomena. You may never see in practice the
extremes of behaviour shown here. Let the examples show you what can happen,
but do not let them destroy your confidence in finite precision arithmetic!

1.1. Notation and Background

We describe the notation used in the book and briefly set up definitions needed
for this chapter.
Generally, we use

capital letters A,B,C, A A for matrices,
subscripted lower case letters ajj, b;j, ¢i;, 055, A\i; for matrix elements,
lower case letters Z,Y,20C,0,h for vectors,
lower case Greek letters a,fB,v,0,7 for scalars,

following the widely used convention originally introduced by Householder (644,
1964].

The vector space of all real m x n matrices is denoted by R™*™ and the
vector space of real n-vectors by R™. Similarly, C™*™ denotes the vector space of
complex m x n matrices. A superscript “I"™” denotes transpose and a superscript
“«” conjugate transpose.

Algorithms are expressed using a pseudocode based on the MATLAB language
(576, 2000], [824]. Comments begin with the % symbol.

Submatrices are specified with the colon notation, as used in MATLAB and
Fortran 90/95: A(p: g, : s) denotes the submatrix of A formed by the intersection
of rows p to ¢ and columns 7 to s. As a special case, a lone colon as the row
or column specifier means to take all entries in that row or column; thus A(:, 5)
is the jth column of A, and A(7,:) the ith row. The values taken by an integer
variable are also described using the colon notation: “¢ = 1:n” means the same as
“=1,2,...,n".

Evaluation of an expression in floating point arithmetic is denoted fI(-), and
we assume that the basic arithmetic operations op = +, —, , / satisfy

fllzopy) =(zopy)(1+6), 8| < (1.1)

2For the purposes of this book an algorithm is a MATLAB program; cf. Smale [1046, 19go).

1.2 RELATIVE ERROR AND SIGNIFICANT DIGITS 3

Here, u is the unit roundoff (or machine precision), which is typically of order
10~8 or 1076 in single and double precision computer arithmetic, respectively,
and between 1071° and 1072 on pocket calculators. For more on floating point
arithmetic see Chapter 2.

Computed quantities (and, in this chapter only, arbitrary approximations) wear
a hat. Thus 7 denotes the computed approximation to z.

Definitions are often (but not always) indicated by “:=" or “=:", with the colon
next to the object being defined.

We make use of the floor and ceiling functions: |z is the largest integer less
than or equal to z, and [z] is the smallest integer greater than or equal to z.

The normal distribution with mean g and variance o2 is denoted by N(u,c?).

We measure the cost of algorithms in flops. A flop is an elementary floating
point operation: +, —, /, or *. We normally state only the highest-order terms
of flop counts. Thus, when we say that an algorithm for n x n matrices requires
2n3/3 flops, we really mean 2n%/3 + O(n?) flops.

Other definitions and notation are introduced when needed.

Except where stated otherwise, all our numerical experiments were carried out
in MATLAB 6.1 (R12.1) [824] on a Pentium III machine under Windows 98 or
Windows ME, sometimes in conjunction with the Symbolic Math Toolbox [825].
Thus our computations were done in IEEE standard floating point arithmetic with
unit roundoff v = 2753 ~ 1.1 x 10~!6. Sometimes, we simulate single precision
arithmetic (u = 6 x 1078) by rounding the result of every elementary operation to
single precision (using the function chop from the Matrix Computation Toolbox—
see Appendix D).

1.2. Relative Error and Significant Digits

Let T be an approximation to a real number z. The most useful measures of the
accuracy of T are its absolute error

Ea.s(Z) = |z — T,
and its relative error

|z — 7|
||

Era(Z) =

(which is undefined if £ = 0). An equivalent definition of relative error is Fye)(T) =
|p], where T = z(1 + p). Some authors omit the absolute values from these defini-
tions. When the sign is important we will simply talk about “the error z — z”.

In scientific computation, where answers to problems can vary enormously in
magnitude, it is usually the relative error that is of interest, because it is scale
independent: scaling £ — az and T — oZ leaves Ere(ZT) unchanged.

Relative error is connected with the notion of correct significant digits (or cor-
rect significant figures). The significant digits in a number are the first nonzero
digit and all succeeding digits. Thus 1.7320 has five significant digits, while 0.0491
has only three. What is meant by correct significant digits in a number that ap-
proximates another seems intuitively clear, but a precise definition is problematic,
as we explain in a moment. First, note that for a number Z with p significant

4 PrINCIPLES OF FINITE PRECISION COMPUTATION

digits there are only p 4+ 1 possible answers to the question, “How many correct
significant digits does Z have?” (assuming Z is not a constant such as 2.0 that is
known exactly). Therefore the number of correct significant digits is a fairly crude
measure of accuracy in comparison with the relative error. For example, in the
following two cases Z agrees with = to three but not four significant digits by any
reasonable definition, yet the relative errors differ by a factor of about 44:

z = 1.00000, 7 =1.00499, Eiei(Z)=4.99 x 10-3,
z = 9.00000, 7 =8.99899, FEra(Z)=1.12x 10~4.

Here is a possible definition of correct significant digits: an approzimation T
to T has p correct significant digits if T and = round to the same number to p
significant digits. Rounding is the act of replacing a given number by the nearest
p significant digit number, with some rule for breaking ties when there are two
nearest. This definition of correct significant digits is mathematically elegant and
agrees with intuition most of the time. But consider the numbers

z=0.9949, 7 =0.9951.

According to the definition Z does not have two correct significant digits (z — 0.99,
Z — 1.0), but does have one and three correct significant digits! A definition of
correct significant digits that does not suffer from the latter anomaly states that
T agrees with T to p significant digits if |z — Z| is less than half a unit in the pth
stgnificant digit of . However, this definition implies that 0.123 and 0.127 agree
to two significant digits, whereas many people would say that they agree to less
than two significant digits.

In summary, while the number of correct significant digits provides a useful
way in which to think about the accuracy of an approximation, the relative error
is a more precise measure (and is base independent). Whenever we give an ap-
proximate answer to a problem we should aim to state an estimate or bound for
the relative error.

When = and 7 are vectors the relative error is most often defined with a norm,
as ||z — Z||/||z|. For the commonly used norms |z]e = max;|z;|, ||z], =
> |24, and ||z])2 := (z7z)/2, the inequality ||z —Z|/||lz|| < & x 107P implies that
components Z; with |Z;| = ||z|| have about p correct significant decimal digits, but
for the smaller components the inequality merely bounds the absolute error.

A relative error that puts the individual relative errors on an equal footing is
the componentwise relative error

|z — 4|

max ,
i

which is widely used in error analysis and perturbation analysis (see Chapter 7,

for example).

As an interesting aside we mention the “tablemaker’s dilemma”. Suppose you
are tabulating the values of a transcendental function such as the sine function
and a particular entry is evaluated as 0.124]500000000 correct to a few digits in
the last place shown, where the vertical bar follows the final significant digit to
be tabulated. Should the final significant digit be 4 or 57 The answer depends

1.3 SOURCES OF ERRORS 5

on whether there is a nonzero trailing digit, and there is no simple bound on how
many digits we have to compute in order to answer the question.

1.3. Sources of Errors

There are three main sources of errors in numerical computation: rounding, data
uncertainty, and truncation.

Rounding errors, which are an unavoidable consequence of working in finite
precision arithmetic, are largely what this book is about. The remainder of this
chapter gives basic insight into rounding errors and their effects.

Uncertainty in the data is always a possibility when we are solving practical
problems. It may arise in several ways:

e from errors of measurement or estimation (possibly large: data in engineering
and economics [835, 1999], for example, is usually accurate to only a few
digits),

e from errors in storing the data on the computer (rounding errors—tiny),

e from the result of errors (big or small) in an earlier computation if the data
is itself the solution to another problem.

The effects of errors in the data are generally easier to understand than the effects
of rounding errors committed during a computation, because data errors can be
analysed using perturbation theory for the problem at hand, while intermediate
rounding errors require an analysis specific to the given method. This book con-
tains perturbation theory for most of the problems considered, for example, in
Chapters 7 (linear systems), 20 (the least squares problem), 21 (underdetermined
systems), and 25 (nonlinear systems).

Analysing truncation errors, or discretization errors, is one of the major tasks
of the numerical analyst. Many standard numerical methods (for example, the
trapezium rule for quadrature, Euler’s method for differential equations, and New-
ton’s method for nonlinear equations) can be derived by taking finitely many terms
of a Taylor series. The terms omitted constitute the truncation error, and for many
methods the size of this error depends on a parameter (often called h, “the step-
size”) whose appropriate value is a compromise between obtaining a small error
and a fast computation.

Because the emphasis of this book is on finite precision computation, with
virtually no mention of truncation errors, it would be easy for the reader to gain
the impression that the study of numerical methods is dominated by the study of
rounding errors. This is certainly not the case. Trefethen explains it well when he
discusses how to define numerical analysis [1153, 19g2]:

Rounding errors and instability are important, and numerical analysts
will always be the experts in these subjects and at pains to ensure that
the unwary are not tripped up by them. But our central mission is to
compute quantities that are typically uncomputable, from an analytic
point of view, and to do it with lightning speed.

6 PrINCIPLES OF FINITE PRECISION COMPUTATION

In this quotation “uncomputable” means that approximations are necessary, and
thus Trefethen’s point is that developing good approximations is a more funda-
mental task than analysing the effects of rounding errors on those approximations.

A possible way to avoid rounding and truncation errors (but not data er-
rors) is to try to solve a problem using a symbolic manipulation package, such as
Maple [815] (perhaps via MATLAB’s Symbolic Math Toolbox [825]) or Mathe-
matica® [818], 1253, 1999]. Indeed, we have used this approach to compute “exact
answers” in some of our numerical experiments. While we acknowledge the value
of symbolic manipulation as part of the toolkit of the scientific problem solver, we
do not study it in this book.

1.4. Precision Versus Accuracy

The terms accuracy and precision are often confused or used interchangeably, but
it is worth making a distinction between them. Accuracy refers to the absolute or
relative error of an approximate quantity. Precision is the accuracy with which
the basic arithmetic operations +, —, %,/ are performed, and for floating point
arithmetic is measured by the unit roundoff u (see (1.1)). Accuracy and precision
are the same for the scalar computation ¢ = a*b, but accuracy can be much worse
than precision in the solution of a linear system of equations, for example.

It is important to realize that accuracy is not limited by precision, at least in
theory. This may seem surprising, and may even appear to contradict many of
the results in this book. However, arithmetic of a given precision can be used
to simulate arithmetic of arbitrarily high precision, as explained in §27.9. (The
catch is that such simulation is too expensive to be of practical use for routine
computation.) In all our error analyses there is an implicit assumption that the
given arithmetic is not being used to simulate arithmetic of a higher precision.

1.5. Backward and Forward Errors

Suppose that an approximation § to y = f(z) is computed in an arithmetic of
precision u, where f is a real scalar function of a real scalar variable. How should
we measure the “quality” of 3?7

In most computations we would be happy with a tiny relative error, E.)(§) ~ u,
but this cannot always be achieved. Instead of focusing on the relative error of i
we can ask, “For what set of data have we actually solved our problem?”, that is,
for what Az do we have § = f(z + Az)? In general, there may be many such Az,
so we should ask for the smallest one. The value of |Az| (or min|Az|), possibly
divided by |z|, is called the backward error. The absolute and relative errors of §
are called forward errors, to distinguish them from the backward error. Figure 1.1
illustrates these concepts.

The process of bounding the backward error of a computed solution is called
backward error analysis, and its motivation is twofold. First, it interprets round-
ing errors as being equivalent to perturbations in the data. The data frequently

3Mathematica is a registered trademark of Wolfram Research Inc.

1.5 BACKWARD AND FORWARD ERRORS 7

Input space Output space
~
backward error —~ -
S~~~
T+ Az < forward error
~
~
~
—

Figure 1.1. Backward and forward errors for y = f(z). Solid line = ezact; dotted line =
computed.

contains uncertainties due to measurements, previous computations, or errors com-
mitted in storing numbers on the computer, as explained in §1.3. If the backward
error is no larger than these uncertainties then the computed solution can hardly
be criticized—it may be the solution we are seeking, for all we know. The second
attraction of backward error analysis is that it reduces the question of bounding
or estimating the forward error to perturbation theory, which for many problems
is well understood (and only has to be developed once, for the given problem, and
not for each method). We discuss perturbation theory in the next section.

A method for computing y = f(z) is called backward stable if, for any z, it
produces a computed § with a small backward error, that is, § = f(z + Az) for
some small Az. The definition of “small” will be context dependent. In general, a
given problem has several methods of solution, some of which are backward stable
and some not.

As an example, assumption (1.1) says that the computed result of the operation
T + y is the exact result for perturbed data =(1 4+ §) and y(1 +) with |[6] < w;
thus addition and subtraction are, by assumption, backward stable operations.

Most routines for computing the cosine function do not satisfy § = cos(z + Az)
with a relatively small Az, but only the weaker relation ¥ + Ay = cos(z + Az),
with relatively small Ay and Az. A result of the form

+ay=flz+Aaz), |Ayl<eyl, |Az]<nlz| (1.2)

is known as a mized forward—backward error result and is illustrated in Figure 1.2.
Provided that € and 7 are sufficiently small, (1.2) says that the computed value §
scarcely differs from the value § + Ay that would have been produced by an input
T + Az scarcely different from the actual input . Even more simply, ¥ is almost
the right answer for almost the right data.

In general, an algorithm is called numerically stable if it is stable in the mixed
forward-backward error sense of (1.2) (hence a backward stable algorithm can
certainly be called numerically stable). Note that this definition is specific to
problems where rounding errors are the dominant form of errors. The term stability
has different meanings in other areas of numerical analysis.

8 PRINCIPLES OF FINITE PRECISION COMPUTATION

Input space Output space

T — o ¥ = f(2)

~
backward error ~ -
~—
T+ Az ~ forward error
~
~
~
~ej
o

f(z + Az)

Figure 1.2. Mized forward-backward error for y = f(z). Solid line = ezact; dotted line
= computed.

1.6. Conditioning

The relationship between forward and backward error for a problem is governed
by the conditioning of the problem, that is, the sensitivity of the solution to
perturbations in the data. Continuing the y = f(z) example of the previous
section, let an approximate solution 7 satisfy § = f(z + Az). Then, assuming for
simplicity that f is twice continuously differentiable,

f"(z+6Ax)

(AP, 8 e),

U-y=flz+Az) - f(z) = f'(z) Dz +

and we can bound or estimate the right-hand side. This expansion leads to the
notion of condition number. Since

I-y _ (2f@\ e o0
‘(f(x)) 2 Tolaa),

the quantity
zf'(x)
f(z)

measures, for small Az, the relative change in the output for a given relative
change in the input, and it is called the (relative) condition number of f. If z or f
is a vector then the condition number is defined in a similar way using norms, and
it measures the mazimum relative change, which is attained for some, but not all,
vectors Az.

As an example, consider the function f(z) = logz. The condition number is
c(z) = |1/ log z|, which is large for z &~ 1. This means that a small relative change
in « can produce a much larger relative change in logz for £ = 1. The reason is
that a small relative change in z produces a small absolute change in f(z) = logz
(since f(z+ Az) = f(z)+ f'(z)Az = f(z) + Az/x), and that change in log z may
be large in a relative sense.

c(z) =

1.7 CANCELLATION 9

When backward error, forward error, and the condition number are defined in
a consistent fashion we have the useful rule of thumb that

forward error < condition number x backward error,

with approximate equality possible. One way to interpret this rule of thumb is
to say that the computed solution to an ill-conditioned problem can have a large
forward error. For even if the computed solution has a small backward error, this
error can be amplified by a factor as large as the condition number when passing
to the forward error.

One further definition is useful. If a method produces answers with forward
errors of similar magnitude to those produced by a backward stable method, then
it is called forward stable. Such a method need not be backward stable itself.
Backward stability implies forward stability, but not vice versa. An example of a
method that is forward stable but not backward stable is Cramer’s rule for solving
a 2 x 2 linear system, which is discussed in §1.10.1.

1.7. Cancellation

Cancellation is what happens when two nearly equal numbers are subtracted. It
is often, but not always, a bad thing. Consider the function f(z) = (1 —cosz)/z?.
With 2 = 1.2 x 10~ the value of cos z rounded to 10 significant figures is

¢ = 0.9999 9999 99,

so that
1 — ¢ =0.0000 0000 01.

Then (1 —¢)/z% =10719/1.44 x 107'% = 0.6944. .., which is clearly wrong given
the fact that 0 < f(z) < 1/2 for all z # 0. A 10-significant-figure approximation
to cosz is therefore not sufficient to yield a value of f(z) with even one correct
figure. The problem is that 1 — ¢ has only 1 significant figure. The subtraction
1—c is exact, but this subtraction produces a result of the same size as the error in
¢. In other words, the subtraction elevates the importance of the earlier error. In
this particular example it is easy to rewrite f(z) to avoid the cancellation. Since

cosz = 1 — 2sin?(z/2),
1 (sin(z/2)\?
@) =3 (x—/2>

Evaluating this second formula for f(z) with a 10-significant-figure approximation
to sin(z/2) yields f(z) = 0.5, which is correct to 10 significant figures.

To gain more insight into the cancellation phenomenon consider the subtraction
(in exact arithmetic) Z = @— b, where @ = a(1+ Aa) and b = b(1+ Ab). The terms
Aa and Ab are relative errors or uncertainties in the data, perhaps attributable
to previous computations. With £ = a — b we have

-7

ax(|dal, |) .

—ala + bAb’

T a—>b

10 PrINCIPLES OF FINITE PRECISION COMPUTATION

The relative error bound for Z is large when |a — b] < |a| + |b], that is, when there
is heavy cancellation in the subtraction. This analysis shows that subtractive
cancellation causes relative errors or uncertainties already present in @ and b to
be magnified. In other words, subtractive cancellation brings earlier errors into
prominence.

It is important to realize that cancellation is not always a bad thing. There are
several reasons. First, the numbers being subtracted may be error free, as when
they are from initial data that is known exactly. The computation of divided
differences, for example, involves many subtractions, but half of them involve the
initial data and are harmless for suitable orderings of the points (see §5.3 and
§22.3). The second reason is that cancellation may be a symptom of intrinsic ill
conditioning of a problem, and may therefore be unavoidable. Third, the effect of
cancellation depends on the role that the result plays in the remaining computa-
tion. For example, if £ > y =~ z > 0 then the cancellation in the evaluation of
z + (y — 2) is harmless.

1.8. Solving a Quadratic Equation

Mathematically, the problem of solving the (real) quadratic equation az?+bx+c =
0 is trivial: there are two roots (if a # 0), given by

oo —b+ Vb2 —4ac

~ (1.3)

Numerically, the problem is more challenging, as neither the successful evaluation
of (1.3) nor the accuracy of the computed roots can be taken for granted.

The easiest issue to deal with is the choice of formula for computing the roots.
If b2 > |4ac| then vb? — 4ac = |b|, and so for one choice of sign the formula (1.3)
suffers massive cancellation. This is damaging cancellation because one of the
arguments, fl(v/b? — 4ac), is inexact, so the subtraction brings into prominence
the earlier rounding errors. How to avoid the cancellation is well known: obtain
the larger root (in absolute value), z;, from

(b + sign(b)vb? — dac)
2a ’

I =

and the other from the equation z1z; = c/a.

Unfortunately, there is a more pernicious source of cancellation: the subtraction
b2 —4ac. Accuracy is lost here when b? = 4ac (the case of nearly equal roots), and
no algebraic rearrangement can avoid the cancellation. The only way to guarantee
accurate computed roots is to use extended precision (or some trick tantamount
to the use of extended precision) in the evaluation of b2 — 4ac.

Another potential difficulty is underflow and overflow. If we apply the for-
mula (1.3) in IEEE single precision arithmetic (described in §2.3) to the equation
102022 — 31020z + 2 - 102° = 0 then overflow occurs, since the maximum floating
point number is of order 1038; the roots, however, are innocuous: z = 1 and z = 2.
Dividing through the equation by max(|al, ||, |c|) = 3-10%° cures the problem, but
this strategy is ineffective for the equation 1072022 — 3z 4+2-10%° = 0, whose roots

1.9 COMPUTING THE SAMPLE VARIANCE 11

are 1029 and 2- 10%. In the latter equation we need to scale the variable: defining
z = 10%% gives 10%y? — 3 - 10%°y + 2- 10%° = 0, which is the first equation we
considered. These ideas can be built into a general scaling strategy (see the Notes
and References), but the details are nontrivial.

As this discussion indicates, not only is it difficult to devise an accurate and
robust algorithm for solving a quadratic equation, but it is a nontrivial task to
prepare specifications that define precisely what “accurate” and “robust” mean
for a given system of floating point arithmetic.

1.9. Computing the Sample Variance

In statistics the sample variance of n numbers z1,..., 2, is defined as

s2 = —i i (1.4)

where the sample mean

3

8
|

Z;.
1

S|

%

Computing s2 from this formula requires two passes through the data, one to com-
pute T and the other to accumulate the sum of squares. A two-pass computation
is undesirable for large data sets or when the sample variance is to be computed as
the data is generated. An alternative formula, found in many statistics textbooks,
uses about the same number of operations but requires only one pass through the

data:
1 n) 1 n 2
2 _ 2 _ -~)
Sn = 7 (;:111 - (E xz)) (1.5)

i=1

This formula is very poor in the presence of rounding errors because it computes
the sample variance as the difference of two positive numbers, and therefore can
suffer severe cancellation that leaves the computed answer dominated by roundoff.
In fact, the computed answer can be negative, an event aptly described by Chan,
Golub, and LeVeque [214, 1983] as “a blessing in disguise since this at least alerts
the programmer that disastrous cancellation has occurred”. In contrast, the orig-
inal formula (1.4) always yields a very accurate (and nonnegative) answer, unless
n is large (see Problem 1.10). Surprisingly, current calculators from more than
one manufacturer (but not Hewlett-Packard) appear to use the one-pass formula,
and they list it in their manuals.

As an example, if z = [10000, 10001, 10002]7 then, in single precision arithmetic
(u =~ 6 x 10~8), the sample variance is computed as 1.0 by the two-pass formula
(relative error 0) but 0.0 by the one-pass formula (relative error 1). It might
be argued that this data should be shifted by some estimate of the mean before
applying the one-pass formula (z; — z; — d, i = 1: n, which does not change s2),
but a good estimate is not always available and there are alternative one-pass
algorithms that will always produce an acceptably accurate answer. For example,

12 PRINCIPLES OF FINITE PRECISION COMPUTATION

instead of accumulating ", z; and 3, 22 we can accumulate

k

zi and Qo= 3 (e Zx,__@m,)

=1 =1 =1

—

which can be done via the updating formulae

— M. _
Tk — Mk—1 k k 1’ k=2:n, (1.6&)

(k —1)(zk — Mi_1)?
k 7

My =z, My = M1+

Q:1=0, Qr = Q-1+

k=2n, (1.6b)

after which s2 = Q,/(n—1). Note that the only subtractions in these recurrences
are relatively harmless ones that involve the data z;. For the numerical example
above, (1.6) produces the exact answer. The updating formulae (1.6) are numeri-
cally stable, though their error bound is not as small as the one for the two-pass
formula (it is proportional to the condition number k5 in Problem 1.7).

The problem of computing the sample variance illustrates well how mathemat-
ically equivalent formulae can have different numerical stability properties.

1.10. Solving Linear Equations

For an approximate solution y to a linear system Az = b (A € R™™™, b € R")
the forward error is defined as ||z — y||/||z||, for some appropriate norm. Another
measure of the quality of y, more or less important depending on the circumstances,
is the size of the residual r = b — Ay. When the linear system comes from an
interpolation problem, for example, we are probably more interested in how closely
Ay represents b than in the accuracy of y. The residual is scale dependent: multiply
A and b by «, and 7 is multiplied by a. One way to obtain a scale-independent
quantity is to divide by ||A|| ||y]|, yielding the relative residual

b — Ayl
Al lyll -

The importance of the relative residual is explained by the following result, which
was probably first proved by Wilkinson (see the Notes and References). We use
the 2-norm, defined by ||z|z = (z7z)!/2 and ||Al|2 = maxzxq ||Az(l2/l|z]l2-

ply) ==

Lemma 1.1. With the notation above, and for the 2-norm,

_ (184 _

Proof. If (A + AA)y = b then r := b— Ay = AAy, so ||r|l2 < ||AA]2]lyl2,
giving

144l o irlla
Ml = Tl ~ Y (1.7)

On the other hand, (A+AA)y = b for AA = ryT /(yTy) and ||AA|2 = I7]l2/llyll2,
so the bound (1.7) is attainable. O

1.10 SOLVING LINEAR EQUATIONS 13

Lemma 1.1 says that p(y) measures how much A (but not b) must be perturbed
in order for y to be the exact solution to the perturbed system, that is, p(y) equals
a normwise relative backward error. If the data A and b are uncertain and p(y) is
no larger than this uncertainty (e.g., p(y) = O(u)) then the approximate solution
y must be regarded as very satisfactory. For other problems the backward error
may not be as easy to compute as it is for a general linear system, as we will see for
the Sylvester equation (§16.2), the least squares problem (§20.7), and the problem
of minimum norm solution of an underdetermined system (§21.2).

To illustrate these concepts we consider two specific linear equation solvers:
Gaussian elimination with partial pivoting (GEPP) and Cramer’s rule.

1.10.1. GEPP Versus Cramer’s Rule

Cramer’s rule says that the components of the solution to a linear system Az = b
are given by z; = det(A;(b))/det(A), where A;(b) denotes A with its ith col-
umn replaced by b. These formulae are a prime example of a method that is
mathematically elegant, but useless for solving practical problems. The two flaws
in Cramer’s rule are its computational expense and its numerical instability. The
computational expense needs little comment and is, fortunately, explained in most
modern linear algebra textbooks (for example, Strang [1092, 1993] cautions the
student that “it would be crazy to solve equations that way”). The numerical
instability is less well known, but not surprising. It is present even for n = 2, as a
numerical example shows.

We formed a 2x2 system Az = b with condition number x2(A) = ||A]|2]|A7Y||2 =
10*3, and solved the system by both Cramer’s rule and GEPP in MATLAB (unit
roundoff u &~ 1.1 x 10716). The results were as follows, where r = b — AZ:

Cramer’s rule GEPP
. r/Allzk) | @ /(1 All2/|Z]]2)
1.0000 1.5075 x 10~7 | 1.0002 —4.5689 x 10~17
2.0001 1.9285 x 10~7 | 2.0004 —2.1931 x 10~17

The scaled residual for GEPP is pleasantly small—of order the unit round-
off. That for Cramer’s rule is 10 orders of magnitude larger, showing that the
computed solution T from Cramer’s rule does not closely satisfy the equations,
or, equivalently, does not solve a nearby system. The solutions themselves are
similar, both being accurate to three significant figures in each component but
incorrect in the fourth significant figure. This is the accuracy we would expect
from GEPP because of the rule of thumb “forward error < condition number x
backward error”. That Cramer’s rule is as accurate as GEPP in this example,
despite its large residual, is perhaps surprising, but it is explained by the fact that
Cramer’s rule is forward stable for n = 2; see Problem 1.9. For general n, the
accuracy and stability of Cramer’s rule depend on the method used to evaluate
the determinants, and satisfactory bounds are not known even for the case where
the determinants are evaluated by GEPP.

The small residual produced by GEPP in this example is typical: error analysis
shows that GEPP is guaranteed to produce a relative residual of order u when
n = 2 (see §9.3). To see how remarkable a property this is, consider the rounded

14 PRrINCIPLES OF FINITE PRECISION COMPUTATION

version of the exact solution: z = fi(z) = ¢ + Az, where ||Az||; < ul|z||2. The
residual of z satisfies ||b — Az||2 = ||-AAz||2 < ul|All2]|z]l2 = u||4]||2]|]|]2- Thus
the computed solution from GEPP has about as small a residual as the rounded
ezact solution, irrespective of its accuracy.

Expressed another way, the errors in GEPP are highly correlated so as to
produce a small residual. To emphasize this point, the vector [1.0006,2.0012],
which agrees with the exact solution of the above problem to five significant figures
(and therefore is more accurate than the solution produced by GEPP), has a
relative residual ||r||2/(||All2||Z]|2) of order 107°.

1.11. Accumulation of Rounding Errors

Since the first electronic computers were developed in the 1940s, comments along
the following lines have often been made: “The enormous speed of current ma-
chines means that in a typical problem many millions of floating point operations
are performed. This in turn means that rounding errors can potentially accumu-
late in a disastrous way.” This sentiment is true, but misleading. Most often,
instability is caused not by the accumulation of millions of rounding errors, but
by the insidious growth of just a few rounding errors.

As an example, let us approximate e = exp(1) by taking finite n in the definition
e = limp_,(1 + 1/n)"*. Table 1.1 gives results computed in single precision
(u~6x1078).

The approximations are poor, degrading as n approaches the reciprocal of
the machine precision. For n a power of 10, 1/n has a nonterminating binary
expansion. When 1+ 1/n is formed for n a large power of 10, only a few significant
digits from 1/n are retained in the sum. The subsequent exponentiation to the
power n, even if done exactly, must produce an inaccurate approximation to e
(indeed, doing the exponentiation in double precision does not change any of the
numbers shown in Table 1.1). Therefore a single rounding error is responsible for
the poor results in Table 1.1.

There is a way to compute (1 + 1/n)™ more accurately, using only single pre-
cision arithmetic; it is the subject of Problem 1.5.

Strassen’s method for fast matrix multiplication provides another example of
the unpredictable relation between the number of arithmetic operations and the
error. If we evaluate fl(AB) by Strassen’s method, for n x n matrices A and B,
and we look at the error as a function of the recursion threshold nyo < n, we find
that while the number of operations decreases as ng decreases from n to 8, the
error typically increases; see §23.2.2.

1.12. Instability Without Cancellation

It is tempting to assume that calculations free from subtractive cancellation must
be accurate and stable, especially if they involve only a small number of operations.
The three examples in this section show the fallacy of this assumption.

1.12 INSTABILITY WITHOUT CANCELLATION 15

Table 1.1. Computed approrimations ﬁ = fl((l + l/n)") toe=2.71828....

n Jn |e - fnl
10' | 2.593743 1.25 x 107!
10% | 2.704811 1.35x 10~?
10® | 2.717051 1.23x 1073
10* | 2.718597 3.15x 10~*
10° | 2.721962 3.68 x 1073
10% | 2.595227 1.23 x 107!
107 | 3.293968 5.76 x 107!

1.12.1. The Need for Pivoting

Suppose we wish to compute an LU factorization
_le =1] 1 Offun we
R O R
Clearly, uy; =€, w19 = —1, lgy = €}, and ugy = 1 — lpju1g = 1 4+ €1, In floating

point arithmetic, if ¢ is sufficiently small then s2; = fI(1 + €~1) evaluates to e~}
Assuming lo; is computed exactly, we then have

o5 e -1 1 0f]e -1]_1]0 0
e i B PO | i
Thus the computed LU factors fail completely to reproduce A. Notice that there
is no subtraction in the formation of L and U/. Furthermore, the matrix A is very
well conditioned (koo(A) = 4/(1 + €)). The problem, of course, is with the choice

of € as the pivot. The partial pivoting strategy would interchange the two rows of
A before factorizing it, resulting in a stable factorization.

1.12.2. An Innocuous Calculation?

For any z > 0 the following computation leaves z unchanged:

for i = 1:60
T=z

end

for i = 1: 60
z =2

end

Since the computation involves no subtractions and all the intermediate numbers
lie between 1 and z, we might expect it to return an accurate approximation to x
in floating point arithmetic.

On the HP 48G calculator, starting with = 100 the algorithm produces
z = 1.0. In fact, for any z, the calculator computes, in place of f(z) = z, the

16 PrINCIPLES OF FINITE PRECISION COMPUTATION

function

f(x)z{o, 0<z<1,

1, z>1.

120 operations on nonnegative numbers. How can this happen?
The positive numbers = representable on the HP 48G satisfy 10749 <
G
9.999... x 10%%9. If we define r(z) = £}/?" then, for any machine number z

1< ,,,(:L.) < ,,,(10500) — 10500/260

£00.2—060. —15
:e"002 log 10 < 610

=14107"%+1.10730+..

which rounds to 1, since the HP 48G works to about 12 decimal digits. Thus
for > 1, the repeated square roots reduce = to 1.0, which the squarings leave
unchanged.
For 0 < £ < 1 we have
£<0.99...9

=
12

on a 12-digit calculator, so we would expect the square root to satisfy

\/5 S (1 _ 10—12)1/2 =1- % . 10—12 _
=0.99...9499...987499...
12 11

1. 10-24
1,107 ...

This upper bound rounds to the 12-significant-digit number 0.99...9. Hence after
the 60 square roots we have on the c%culator a number = < 0.99...9. The 60
squarings are represented by s(z) = 2", and

s(z) < 5(0.99...9) = (1 —10712)2%
— 102% log(1-107"*) logq e
~ 10—21"0~10_12~log10 e

~ 3.6 x 107500708,

Because it is smaller than the smallest positive representable number, this result
is set to zero on the calculator—a process known as underflow. (The converse
situation, in which a result exceeds the largest representable number, is called
overflow.)

The conclusion is that there is nothing wrong with the calculator. This innocuous-
looking calculation simply exhausts the precision and range of a machine with 12
digits of precision and a 3-digit exponent.

1.12.3. An Infinite Sum

It is well known that 3"p | k=% = 7%/6 = 1.6449 3406 6848. ... Suppose we were
not aware of this identity and wished to approximate the sum numerically. The
most obvious strategy is to evaluate the sum for increasing k until the computed

1.13 INCREASING THE PRECISION 17

sum does not change. In single precision this yields the value 1.6447 2532, which
is first attained at k = 4096. This agrees with the exact infinite sum to just four
significant digits out of a possible nine.

The explanation for the poor accuracy is that we are summing the numbers
from largest to smallest, and the small numbers are unable to contribute to the
sum. For k = 4096 we are forming s 4+ 4096~2 = s + 2724, where s ~ 1.6. Single
precision corresponds to a 24-bit significand, so the term we are adding to s “drops
off the end” of the computer word, as do all successive terms.

The simplest cure for this inaccuracy is to sum in the opposite order: from
smallest to largest. Unfortunately, this requires knowledge of how many terms to
take before the summation begins. With 10° terms we obtain the computed sum
1.6449 3406, which is correct to eight significant digits.

For much more on summation, see Chapter 4.

1.13. Increasing the Precision

When the only source of errors is rounding, a common technique for estimating
the accuracy of an answer is to recompute it at a higher precision and to see how
many digits of the original and the (presumably) more accurate answer agree.
We would intuitively expect any desired accuracy to be achievable by computing
at a high enough precision. This is certainly the case for algorithms possessing
an error bound proportional to the precision, which includes all the algorithms
described in the subsequent chapters of this book. However, since an error bound
is not necessarily attained, there is no guarantee that a result computed in ¢-digit
precision will be more accurate than one computed in s-digit precision, for a given
t > s; in particular, for a very ill conditioned problem both results could have no
correct digits.

For illustration, consider the system Az = b, where A is the inverse of the
5 x 5 Hilbert matrix and b; = (—1)%. (For details of the matrices used in this
experiment see Chapter 28.) We solved the system in varying precisions with unit
roundoffs u = 27%, t = 15:40, corresponding to about 4 to 12 decimal places of
accuracy. (This was accomplished in MATLAB by using the function chop from
the Matrix Computation Toolbox to round the result of every arithmetic operation
to t bits; see Appendix D.) The algorithm used was Gaussian elimination (without
pivoting), which is perfectly stable for this symmetric positive definite matrix. The
upper plot of Figure 1.3 shows ¢ against the relative errors ||z — Z||/||z]|co and
the relative residuals ||b— AZ||co /(|| Alloo [|Z|loo)- The lower plot of Figure 1.3 gives
corresponding results for A = Ps + 51, where Ps is the Pascal matrix of order
5. The condition numbers Ko, (A) are 1.62 x 102 for the inverse Hilbert matrix
and 9.55 x 10° for the shifted Pascal matrix. In both cases the general trend
is that increasing the precision decreases the residual and relative error, but the
behaviour is not monotonic. The reason for the pronounced oscillating behaviour
of the relative error (but not the residual) for the inverse Hilbert matrix is not
clear.

An example in which increasing the precision by several bits does not improve

18 PrINCIPLES OF FINITE PRECISION COMPUTATION

invhilb(5)

pascal(5) + eye(5)

10 T T T
10”4 B
107° .
.
107" I I I 1 P
15 20 25 30 35 40
Figure 1.3. Forward errors ||z — Z||oo/||Z]lc (“¥’) and relative residuals ||b —
AZllco /(| AllocIZlloo) (“0”) versus precision t = —log, u on the z axis.

the accuracy is the evaluation of
1
y =z + asin(bz), T = - a= 1078, b=2%. (1.8)

Figure 1.4 plots ¢ versus the absolute error, for precisions v = 27¢, ¢ = 10:40. Since
asin(bz) ~ —8.55 x 1072, for ¢ less than about 20 the error is dominated by the
error in representing = 1/7. For 22 < t < 31 the accuracy is (exactly) constant!
The plateau over the range 22 < ¢ < 31 is caused by a fortuitous rounding error
in the addition: in the binary representation of the exact answer the 23rd to 32nd
digits are 1s, and in the range of ¢ of interest the final rounding produces a number
with a 1 in the 22nd bit and zeros beyond, yielding an unexpectedly small error
that affects only bits 33 onwards.

A more contrived example in which increasing the precision has no beneficial
effect on the accuracy is the following evaluation of z = f(z):

y = abs(3(z — 0.5) — 0.5)/25

ify=0
z=1

else
z=¢€Y % Store to inhibit extended precision evaluation.
z=(z2-1)/y

end

In exact arithmetic, z = f(2/3) = 1, but in MATLAB 2z = fI(f(2/3)) = 0.0
in both (simulated) single precision and double precision arithmetic. A further
example is provided by the “innocuous calculation” of §1.12.2, in which a step
function is computed in place of f(z) = z for a wide range of precisions.

1.14 CANCELLATION OF ROUNDING ERRORS 19

T

o000 06606

LI RN L BN L SRR SRl R

Coogh sad ool (0

10-14 |] 1] 1
15 20 25 30 35

t

_;
o
»
o

Figure 1.4. Absolute error versus precision, t = — log, u, in evaluating (1.8).

It is worth stressing that how precision is increased can greatly affect the results
obtained. Increasing the precision without preserving important properties such
as monotonicity of rounding can vitiate an otherwise reliable algorithm. Increasing
the precision without maintaining a correct relationship among the precisions in
different parts of an algorithm can also be harmful to the accuracy.

1.14. Cancellation of Rounding Errors

It is not unusual for rounding errors to cancel in stable algorithms, with the result
that the final computed answer is much more accurate than the intermediate
quantities. This phenomenon is not universally appreciated, perhaps because we
tend to look at the intermediate numbers in an algorithm only when something is
wrong, not when the computed answer is satisfactory. We describe two examples.
The first is a very short and rather unusual computation, while the second involves
a well-known algorithm for computing a standard matrix decomposition.

1.14.1. Computing (e* — 1)/z

Consider the function f(z) = (e —1)/z = Y oo, */(i+1)!, which arises in various
applications. The obvious way to evaluate f is via the algorithm

% Algorithm 1.

ifz=0
f=1

else
f=(€"-1)/z

end

20 PrINCIPLES OF FINITE PRECISION COMPUTATION

This algorithm suffers severe cancellation for |z| < 1, causing it to produce an
inaccurate answer (0 instead of 1, if z is small enough). Here is an alternative:

% Algorithm 2.

y=e”
ify=1
f=1
else
f=(y—1)/logy
end

At first sight this algorithm seems perverse, since it evaluates both exp and log
instead of just exp. Some results computed in MATLAB are shown in Table 1.2.
All the results for Algorithm 2 are correct in all the significant figures shown, except
for £ = 107!, when the last digit should be 1. On the other hand, Algorithm 1
returns answers that become less and less accurate as = decreases.

To gain insight we look at the numbers in a particular computation with £ =
9x 1078 and u = 2724 = 6 x 108, for which the correct answer is 1.00000005 to
the significant digits shown. For Algorithm 1 we obtain a completely inaccurate
result, as expected:

et —1 1.19209290 x 10~7
! = fl — 1.32454766.
f (T > / <9.00000000 x 10—8>

Algorithm 2 produces a result correct in all but the last digit:

e —1\ 1.19209290 x 10~7
fl (log e® > =/l <1.19209282 x 10—7> = 1.00000006.

Here are the quantities that would be obtained by Algorithm 2 in exact arithmetic
(correct to the significant digits shown):

e®—1 _ 9.00000041 x 10~8

= = 1.00000005.
loge* ~ 9.00000001 x 108

We see that Algorithm 2 obtains very inaccurate values of e — 1 and loge®, but
the ratio of the two quantities it computes is very accurate. Conclusion: errors
cancel in the division in Algorithm 2.

A short error analysis explains this striking cancellation of errors. We assume
that the exp and log functions are both computed with a relative error not ex-
ceeding the unit roundoff u. The algorithm first computes § = €*(1 + §), 5] < u.
Ifg=1thene*(1+6) =1, so

z=—log(l+6)=—-6+6%2-6%34+---, |6 <u,

which implies that the correctly rounded value of f(z) = 1+ z/2 + %6+ --- is
1, and so f has been evaluated correctly, to the working precision. If § # 1 then,
using (1.1),

F-1)1+e)

(1+e3), (1.9)

1.14 CANCELLATION OF ROUNDING ERRORS 21

Table 1.2. Computed values of (¢ — 1)/ from Algorithms 1 and 2.

z Algorithm 1 Algorithm 2
107° | 1.000005000006965 1.000005000016667
107% | 1.000000499962184 1.000000500000167
10~ | 1.000000049433680 1.000000050000002
1078 | 9.999999939225290 x 10~* 1.000000005000000
10~° | 1.000000082740371 1.000000000500000
107!° | 1.000000082740371 1.000000000050000
10~ | 1.000000082740371 1.000000000005000
10~!2 | 1.000088900582341 1.000000000000500
10713 | 9.992007221626408 x 10~1 1.000000000000050
10~ | 9.992007221626408 x 10~* 1.000000000000005
10715 | 1.110223024625156 1.000000000000000
107 | 0 1

where |¢;| < u, i = 1: 3. Thus fis a very accurate approximation to

g1
g(y) . log@\'

Note that § = e*(146) =: €%, where Z = z+6+0(2). To find how g(j) compares
with g(y) = f(z) for y = 1 we write, using the series expansion of f,

o(@) — £(z) = £(8) ~ () = 22 % + 0 - 2’

From (1.9) it follows that fapproximates f with relative error at most about 3.5u.

The details of the analysis obscure the simplicity of the underlying explanation.
The expression (e* — 1)/z cannot be accurately evaluated for a given z = 0 in
floating point arithmetic, while the expression (y — 1)/logy can be accurately
evaluated for a given y = 1. Since these functions are slowly varying near z = 0
(y = 1), evaluating (y — 1)/logy with an accurate, if inexact, approximation to
y = e* = 1 produces an accurate result.

Finally, we note that f is the divided difference of e* at z and 0: (e* —€%)/(z —
0), and Algorithm 2 rewrites f as the reciprocal of the divided difference of log at
y and 1. This example illustrates the principle that we should recognize divided
differences (which may be in disguise) and take care in their evaluation when the
arguments are close.

1.14.2. QR Factorization

Any matrix A € R™*" m > n, has a QR factorization A = QR, where @ € R™*"
has orthonormal columns and R € R"*" is upper trapezoidal (r;; = 0 for ¢ > j).

22 PrINCIPLES OF FINITE PRECISION COMPUTATION

One way of computing the QR factorization is to premultiply A by a sequence of
Givens rotations——orthogonal matrices G that differ from the identity matrix only
in a 2 x 2 principal submatrix, which has the form

[cosf sinﬁ]

—sinf cosf

With A; := A, a sequence of matrices Ay satisfying Ay = G Ar—1 is generated.
Each Ag has one more zero than the last, so A, = R for p = n(m — (n +1)/2).
To be specific, we will assume that the zeros are introduced in the order (n,1),
(n—1,1),...,(2,1); (n,2), ..., (3,2); and so on.

For a particular 10 x 6 matrix A, Figure 1.5 plots the relative errors ||Ax —
Aell2/ | All2, where Ay denotes the matrix computed in single precision arithmetic
(u~ 6x1078). Wesee that many of the intermediate matrices are very inaccurate,
but the final computed Rhasan acceptably small relative error, of order u. Clearly,
there is heavy cancellation of errors on the last few stages of the computation. This
matrix A € R19%6 was specially chosen, following a suggestion of Wilkinson [1244,
1985, as a full matrix such that || Al = 1 and A;o has the form

511 alg A(1,3n)

Ap=1| 0 1 A(2,3:n) |, lvll2 =~ 2u.

0 y A(3m,3n)

Because y is at the roundoff level, the computed 7 is the result of severe subtractive
cancellation and so is dominated by rounding errors. Consequently, the computed
Givens rotations G, ..., G17, whose purpose is to zero the vector 7, and which
are determined by ratios involving the elements of 7, bear little relation to their
exact counterparts, causing Ay to differ greatly from Ak for k = 11,12,....

To shed further light on this behaviour, we note that the Givens QR factoriza-
tion is perfectly backward stable; that is, the computed R is the exact R factor
of A+ AA, where |AA|; < cullA]|2, with ¢ a modest constant depending on
the dimensions (Theorem 19.10). By invoking a perturbation result for the QR
factorization (namely (19.35a)) we conclude that |R — ﬁ”g /|| A]|2 is bounded by
a multiple of kz(A)u. Our example is constructed so that x2(A) is small (= 24),
so we know a priori that the graph in Figure 1.5 must eventually dip down to the
unit roundoff level. R

We also note that [|Q — Q|2 is of order in this example, as again we can show
it must be from perturbation theory. Since @ is a product of Givens rotations,
this means that even though some of the intermediate Givens rotations are very
inaccurate, their product is highly accurate, so in the formation of @, too, there
is extensive cancellation of rounding errors.

1.15. Rounding Errors Can Be Beneficial

An old method for computing the largest eigenvalue (in absolute value) of a matrix
A and the corresponding eigenvector is the power method, which consists of re-
peatedly multiplying a given starting vector by A. With scaling to avoid underflow
and overflow, the process in its simplest form is

1.15 RouNDING ERRORS CAN BE BENEFICIAL 23

error

Figure 1.5. Relative errors |Ax — Axl||2/||All2 for Givens QR factorization. The dotted
line is the unit roundoff level.

% Choose a starting vector z.
while not converged

z:=Azx

T :=z/||o
end

The theory says that if A has a unique eigenvalue of largest modulus and z is
not deficient in the direction of the corresponding eigenvector v, then the power
method converges to a multiple of v (at a linear rate).

Consider the matrix

04 -06 0.2
A=| -03 07 -04 |,
-0.1 -04 05

which has eigenvalues 0, 0.4394, and 1.161 (correct to the digits shown) and an
eigenvector [1,1, l]T corresponding to the eigenvalue zero. If we take [1,1,1]7 as
the starting vector for the power method then, in principle, the zero vector is pro-
duced in one step, and we obtain no indication of the desired dominant eigenvalue-
eigenvector pair. However, when we carry out the computation in MATLAB, the
first step produces a vector with elements of order 10~ and we obtain after 38
iterations a good approximation to the dominant eigenpair. The explanation is
that the matrix A cannot be stored exactly in binary floating point arithmetic.
The computer actually works with A + AA for a tiny perturbation AA, and the
dominant eigenvalue and eigenvector of A + AA are very good approximations to
those of A. The starting vector [1,1,1]7 contains a nonzero (though tiny) com-
ponent of the dominant eigenvector of A + AA. This component grows rapidly

24 PrINCIPLES OF FINITE PRECISION COMPUTATION

under multiplication by A + AA, helped by rounding errors in the multiplication,
until convergence to the dominant eigenvector is obtained.

Perhaps an even more striking example of beneficial effects of rounding errors
is in inverse iteration, which is just the power method applied to the shifted and
inverted matrix (A—pI)~!. The shift y is usually an approximate eigenvalue. The
closer p is to an eigenvalue, the more nearly singular A—u1 is, and hence the larger
the error in computing y = (A —)~z (which is done by solving (4 — pl)y = z).
However, it can be shown that the error lies almost entirely in the direction of the
required eigenvector, and so is harmless; see, for example, Parlett [926, 1998, §4.3]
or Golub and Van Loan [509, 1996, §7.6.1].

1.16. Stability of an Algorithm Depends on the Problem

An algorithm can be stable as a means for solving one problem but unstable when
applied to another problem. One example is the modified Gram—Schmidt method,
which is stable when used to solve the least squares problem but can give poor
results when used to compute an orthonormal basis of a matrix (see §§19.8 and
20.3).

A lesser known and much simpler example is Gaussian elimination (GE) with-
out pivoting for computing the determinant of an upper Hessenberg matrix. A
square matrix A is upper Hessenberg if a;; = 0 for ¢ > j+ 1. GE transforms A to
upper triangular form by n — 1 row eliminations, one for each of the boxed entries
in this 4 x 4 illustration:

X X X X X X X X
X o x ox o ox 0 x x x| _
A_OXX—,OOXX_U
0 0 [X x 0 0 0 x

The determinant of A is given by the product of the diagonal elements of U. It is
easy to show that this is a stable way to evaluate det(A), even though arbitrarily
large multipliers may arise during the elimination. Note, first, that, if A®*) denotes
the matrix at the start of the kth stage (A1) = A), then

(k—1) (k—1) (k—1)

wer = aF) = g1 _ O k-10k—1,k G — Ok k—1%—1,k
kk = Qp = Gy -1 %k T T x-1n
k—1,k—1 Qk—1,k-1

because the kth row of A*~1) is the same as the kth row of A. In floating point
arithmetic the model (1.1) shows that the computed Eig.c) satisfy

~(k—1)
~ ~(k Ok k-10—1,k k k k
U = A = <akk - ,\(k_—l)l (L + €)1+ €))> (1 +€59)
Qk—1k-1
k k k)\7A(k—
(k) [a‘k,k—l(l + 5(1))(1 + fg))(1 + Gg))]ai—ﬁr)c
=ag(lt+ey’)— ~(k-1) ’
Qk—1,k—1

where |e§k)| < u, i = 1:3. This equation says that the computed diagonal el-
ements U, are the exact diagonal elements corresponding not to A, but to a

1.17 RouNDING ERRORS ARE NOT RANDOM 25

Table 1.3. Results from GE without pivoting on an upper Hessenberg matriz.

Exact Computed Relative error
1.0000 2.3842
1.0000 1.0000
| 1.0000 1.0000 1.3842
1.0000 1.0000
det(A): 2.0000 2.0000 1.9209 x 1078

matrix obtained from A by changing the diagonal elements to a,, (1 + egk)) and
the subdiagonal elements to a; ,_, (1 + egk))(1+ egk))1+ egk)). In other words, the
computed ik _are exact for a matrix differing negligibly from A. The computed
determinant d, which is given by

d= fl(ﬂll .. .a,m) = 611 .. .ﬂnn(l + 771) P (1 +T]n), |Th| <u,

is therefore a tiny relative perturbation of the determinant of a matrix differing
negligibly from A, so this method for evaluating det(A) is numerically stable (in
the mixed forward—backward error sense of (1.2)).

However, if we use GE without pivoting to solve an upper Hessenberg linear
system then large multipliers can cause the solution process to be unstable. If we
try to extend the analysis above we find that the computed LU factors (as opposed
to just the diagonal of U) do not, as a whole, necessarily correspond to a small
perturbation of A.

A numerical example illustrates these ideas. Let

a -1 -1 -1
1 1 -1 -1
A= 0 1 1 -1
0 0 1 1

We took a = 1077 and b = Ae (e = [1,1,1,1]7) and used GE without pivoting in
single precision arithmetic (v ~ 6 x 107%) to solve Az = b and compute det(A).
The computed and exact answers are shown to five significant figures in Table 1.3.
Not surprisingly, the computed determinant is very accurate. But the computed
solution to Az = b has no correct figures in its first component. This reflects
instability of the algorithm rather than ill conditioning of the problem because
the condition number #,,(A4) = 16. The source of the instability is the large first
multiplier, ag; /a;; = 107.

1.17. Rounding Errors Are Not Random

Rounding errors, and their accumulated effect on a computation, are not random.
This fact underlies the success of many computations, including some of those
described earlier in this chapter. The validity of statistical analysis of rounding

26 PRINCIPLES OF FINITE PRECISION COMPUTATION

B8.75237658077857 T T —T T T T T
x !x
x x x
x % x x x
N "l x x .) xx . x
L e <X x x x
¥
,,X ¥ » * x‘x % 4 x
x Ry > o » x
{u x % "‘ ,a.xx "P(‘)2"
- X
fl(r(x)) L o *’*" o - x
& ,,”‘r = N ol & o2
b 1«»2- > Y: xxm x
‘i‘ ‘-x i:*).2" :l .;‘X
o x* x x x*
x & * x %
% R x < -~ X
: x§ x x x
x x
x x x x x
x
8.75237658077842 ' : k
0 50 100 150 200 250 300 350
K

Figure 1.6. Values of rational function r(z) computed by Horner’s rule (marked as “x”),
for £ =1.606 + (k — 1)27°2; solid line is the “exact” r(z).

errors is discussed in §2.8. Here we simply give a revealing numerical example (due
to W. Kahan).
Define the rational function

622 — z(751 — (324 — (59 — 4z)))
(@) = T35 z(151 — z(72 — z(14 — z))) ’

which is expressed in a form corresponding to evaluation of the quartic polynomials
in the numerator and denominator by Horner’s rule. We evaluated r(z) by Horner’s
rule in double precision arithmetic for 361 consecutive floating point numbers
starting with @ = 1.606, namely z = a + (k — 1)27°2, k = 1:361; the function
r(z) is virtually constant on this interval. Figure 1.6 plots the computed function
values together with a much more accurate approximation to r(z) (computed from
a continued fraction representation). The striking pattern formed by the values
computed by Horner’s rule shows clearly that the rounding errors in this example
are not random.

1.18. Designing Stable Algorithms

There is no simple recipe for designing numerically stable algorithms. While this
helps to keep numerical analysts in business (even in proving each other’s algo-
rithms to be unstable!) it is not good news for computational scientists in general.
The best advice is to be aware of the need for numerical stability when designing
an algorithm and not to concentrate solely on other issues, such as computational
cost and parallelizability.

A few guidelines can be given.

1.18 DESIGNING STABLE ALGORITHMS 27

1. Try to avoid subtracting quantities contaminated by error (though such sub-
tractions may be unavoidable).

2. Minimize the size of intermediate quantities relative to the final solution. The
reason is that if intermediate quantities are very large then the final answer
may be the result of damaging subtractive cancellation. Looked at another
way, large intermediate numbers swamp the initial data, resulting in loss of
information. The classic example of an algorithm where this consideration is
important is Gaussian elimination (§9.3), but an even simpler one is recursive
summation (§4.2).

3. Look for different formulations of a computation that are mathematically
but not numerically equivalent. For example, the classical Gram—Schmidt
method is unstable, but a trivial modification produces the stable modified
Gram—Schmidt (MGS) method (§19.8). There are two ways of using the
MGS method to solve a least squares problem, the more obvious of which is
unstable (§20.3).

4. It is advantageous to express update formulae as
new_value = old_value + small_correction

if the small correction can be computed with many correct significant fig-
ures. Numerical methods are often naturally expressed in this form; exam-
ples include methods for solving ordinary differential equations, where the
correction is proportional to a stepsize, and Newton’s method for solving a
nonlinear system. A classic example of the use of this update strategy is in
iterative refinement for improving the computed solution to a linear system
Az = b, in which by computing residuals 7 = b — Ay in extended precision
and solving update equations that have the residuals as right-hand sides
a highly accurate solution can be computed; see Chapter 12. For another
example (in which the correction is not necessarily small), see Problem 2.8.

5. Use only well-conditioned transformations of the problem. In matrix com-
putations this amounts to multiplying by orthogonal matrices instead of
nonorthogonal, and possibly, ill-conditioned matrices, where possible. See
86.2 for a simple explanation of this advice in terms of norms.

6. Take precautions to avoid unnecessary overflow and underflow (see §27.8).

Concerning the second point, good advice is to look at the numbers generated
during a computation. This was common practice in the early days of electronic
computing. On some machines it was unavoidable because the contents of the
store were displayed on lights or monitor tubes! Wilkinson gained much insight
into numerical stability by inspecting the progress of an algorithm, and sometimes
altering its course (for an iterative process with parameters): “Speaking for myself
I gained a great deal of experience from user participation, and it was this that
led to my own conversion to backward error analysis” [1243, 1980, pp. 112-113]
(see also [1227, 1955]). It is ironic that with the wealth of facilities we now have
for tracking the progress of numerical algorithms (multiple windows in colour,

28 PrINCIPLES OF FINITE PRECISION COMPUTATION

graphical tools, fast printers) we often glean less than Wilkinson and his co-workers
did from mere paper tape and lights.

1.19. Misconceptions

Several common misconceptions and myths have been dispelled in this chapter
(none of them for the first time—see the Notes and References). We highlight
them in the following list.

1. Cancellation in the subtraction of two nearly equal numbers is always a bad
thing (§1.7).

2. Rounding errors can overwhelm a computation only if vast numbers of them
accumulate (§1.11).

3. A short computation free from cancellation, underflow, and overflow must
be accurate (§1.12).

4. Increasing the precision at which a computation is performed increases the
accuracy of the answer (§1.13).

5. The final computed answer from an algorithm cannot be more accurate than
any of the intermediate quantities; that is, errors cannot cancel (§1.14).

6. Rounding errors can only hinder, not help, the success of a computation
(81.15).

1.20. Rounding Errors in Numerical Analysis

Inevitably, much of this book is concerned with numerical linear algebra, because
this is the area of numerical analysis in which the effects of rounding errors are most
important and have been most studied. In nonlinear problems rounding errors are
often not a major concern because other forms of error dominate. Nevertheless
the effects of rounding errors have been investigated in many areas of numerical
analysis. Throughout the book we give pointers to the general literature (usually
in the Notes and References sections), and particular topics (e.g., quadrature) can
be tracked down via the index.

1.21. Notes and References

The term “correct significant digits” is rarely defined in textbooks; it is apparently
assumed that the definition is obvious. One of the earliest books on numerical anal-
ysis, by Scarborough [1014, 1950] (first edition 1930), is noteworthy for containing
theorems describing the relationship between correct significant digits and relative
error.

The first definition of correct significant digits in §1.2 is suggested by Hilde-
brand [627, 1974, §1.4], who notes its weaknesses.

For a formal proof and further explanation of the fact that precision does not
limit accuracy see Priest [955, 1992].

1.21 NOTES AND REFERENCES 29

It is possible to develop formal definitions of numerical stability, either with
respect to a particular problem, as is frequently done in research papers, or for
a very general class of problems, as is done, for example, by de Jong [301, 1977].
Exceptin §7.6, we do not give formal definitions of stability in this book, preferring
instead to adapt informally the basic notions of backward and forward stability to
each problem, and thereby to minimize the amount of notation and abstraction.

Backward error analysis was systematically developed, exploited, and popular-
ized by Wilkinson in the 1950s and 1960s in his research papers and, in particular,
through his books [1232, 1963], [1233, 1965] (for more about the books see the
Notes and References for Chapter 2). Backward error ideas had earlier appeared
implicitly in papers by von Neumann and Goldstine [1200, 1947] and Turing [1166,
1948], both of which deal with the solution of linear systems, and explicitly in an
unpublished technical report of Givens [490, 1954] on the solution of the symmet-
ric eigenproblem by reduction to tridiagonal form followed by the use of Sturm
sequences. The concept of backward error is not limited to numerical linear alge-
bra. It is used, for example, in the numerical solution of differential equations; see
Coomes, Kogak, and Palmer [269, 1ggs], Eirola [386, 1993], Enright [390, 198g],
Sanz-Serna and Larsson [1010, 19g3], and Shampine [1030, 1994, §2.2],

Conditioning of problems has been studied by numerical analysts since the
1940s, but the first general theory was developed by Rice [985, 1966]. In numerical
linear algebra, developing condition numbers is part of the subject of perturbation
theory, on which there is a large literature.

The solution of a quadratic equation is a classic problem in numerical analysis.
In 1969 Forsythe [428, 1g69] pointed out “the near absence of algorithms to solve
even a quadratic equation in a satisfactory way on actually used digital computer
systems” and he presented specifications suggested by Kahan for a satisfactory
solver. Similar, but less technical, presentations are given by Forsythe [427, 1969],
Forsythe, Malcolm, and Moler [430, 1977, §2.6], and Young and Gregory [1272,
1972, §§1.2, 3.4]. Kahan [688, 1972] and Sterbenz [1062, 1974) both present algo-
rithms for solving a quadratic equation, accompanied by error analysis.

For more details of algorithms for computing the sample variance and their
error analysis, see Chan and Lewis [215, 1979], Chan, Golub, and LeVeque [214,
1983], Barlow [71, 1991], and the references therein. Good general references
on computational aspects of statistics are Kennedy and Gentle [723, 1980] and
Thisted [1135, 1988].

The issues of conditioning and numerical stability play a role in any disci-
pline in which finite precision computation is performed, but the understanding of
these issues is less well developed in some disciplines than in others. In geometric
computation, for example, there has been much interest since the late 1980s in
the accuracy and robustness of geometric algorithms; see Milenkovic [848, 1988],
Hoffmann (632, 1989], Priest [954, 1991], [955, 1992, and Shewchuk [1038, 1997].

It was after discovering Lemma 1.1 that Wilkinson began to develop backward
error analysis systematically in the 1950s. He explains that in solving eigenprob-
lems Az = Az by deflation, the residual of the computed solution, r == AZ — AT
(with the normalization Z7Z = 1), was “always at noise level relative to A” [1245,
1986). He continues, “After some years’ experience of this I happened, almost by
accident, to observe that ... (A —rZT)Z = AZ ... In other words A and Z were

30 PrINCIPLES OF FINITE PRECISION COMPUTATION

exact for a matrix A — rzT and since ||[rZT||2 = ||7(|2, this meant that they were
exact for a matrix differing from A at the noise level of the computer.” For further
details see [1245, 1986] or [1244, 1985].

The numerical stability of Cramer’s rule for 2 x 2 systems has been investigated
by Moler [862, 1974] and Stummel [1095, 1981, §3.3].

The example in §1.12.2 is taken from the HP-15C Advanced Functions Hand-
book [570, 1982], and a similar example is given by Kahan [690, 1980]. For an-
other approach to analysing this “innocuous calculation” see Problem 3.11. The
“f(2/3)” example in §1.13 is also taken from [690, 1980], in which Kahan states
three “anti-theorems” that are included among our misconceptions in §1.19.

The example (1.8) is adapted from an example of Sterbenz [1062, 1974, p. 220],
who devotes a section to discussing the effects of rerunning a computation at higher
precision.

The function expml = e* —1 is provided in some floating point processors and
mathematics libraries as a more accurate alternative to forming e* and subtracting
1 {1125, 1992]. It is important in the computation of sinh and tanh, for example
(since sinhz = e~%(e?* — 1)/2). Of course, it also possible to take the converse
approach and express the exponential in terms of trigonometric functions: the
expression (e* — 1)/z = (e* + 1) tanh(z/2)/z provides an accurate, if generally
expensive, way to evaluate the function investigated in §1.14.1 if an accurate tanh
routine is available. Algorithm 2 in §1.14.1 is due to Kahan [690, 1980].

The instability and stability of GE without pivoting applied to an upper Hes-
senberg matrix (§1.16) was first pointed out and explained by Wilkinson [1228,
1960]; Parlett [923, 1965] also gives a lucid discussion. In the 1950s and 1960s,
prior to the development of the QR algorithm, various methods were proposed
for the nonsymmetric eigenvalue problem that involved transforming a matrix to
Hessenberg form H and then finding the zeros of the characteristic polynomial
det(H — AI). The most successful method of this type was Laguerre’s iteration,
described by Parlett [922, 1964], and used in conjunction with Hyman’s method
for evaluating det(H — AI). Hyman’s method is described in §14.6.1.

Classic papers dispensing good advice on the dangers inherent in numerical
computation are the “pitfalls” papers by Stegun and Abramowitz [1061, 1956] and
Forsythe [429, 1970]. The book Numerical Methods That Work by Acton [4, 1970]
must also be mentioned as a fount of hard-earned practical advice on numerical
computation (look carefully and you will see that the front cover includes a faint
image of the word “Usually” before “Work”). If it is not obvious to you that the
equation 2 — 10z + 1 = 0 is best thought of as a nearly linear equation for the
smaller root, you will benefit from reading Acton (see p. 58). Everyone should
read Acton’s “Interlude: What Not to Compute” (pp. 245-257). Acton’s more
recent work [5, 1996] dispenses further advice.

Finally, we mention the paper “How to Get Meaningless Answers in Scientific
Computation (and What to Do About It)” by Fox [437, 1971]. Fox, a contempo-
rary of Wilkinson, founded the Oxford Computing Laboratory and was for many
years Professor of Numerical Analysis at Oxford. In this paper he gives numer-
ous examples in which incorrect answers are obtained from plausible numerical
methods (many of the examples involve truncation errors as well as rounding er-
rors). The section titles provide a list of reasons why you might compute worthless

PROBLEMS 31

answers:
e Your problem might be ill conditioned.
e Your method might be unstable.
e You expect too much “analysis” from the computer?.
e Your intuition fails you.
e You accept consistency too easily.
e A successful method may fail in slightly different circumstances.
e Your test examples may be too special.

Fox estimates [437, 1971, p. 296] that “about 80 per cent of all the results printed
from the computer are in error to a much greater extent than the user would
believe.”

Problems

The road to wisdom?

Well, it's plain and simple to express:
Err

and err

and err again

but less

and less

and less.

— PIET HEIN, Grooks (1966)

1.1. In error analysis it is sometimes convenient to bound Ere () = |z — z|/|Z]
instead of E,e(Z) = |z — Z|/|z|. Obtain inequalities between E,e(Z) and Frel(Z).

1.2. (Skeel and Keiper [1044, 1993, §1.2]) The number y = e™V163 was evaluated
at t-digit precision for several values of t, yielding the values shown in the following
table, which are in error by at most one unit in the least significant digit (the first
two values are padded with trailing zeros):

t Yy

10 262537412600000000

15 262537412640769000

20 262537412640768744.00

25 262537412640768744.0000000

30 262537412640768743.999999999999

Does it follow that the last digit before the decimal point is 47

1.3. Show how to rewrite the following expressions to avoid cancellation for the
indicated arguments.

4This reason refers to using an inappropriate convergence test in an iterative process.

32 PRINCIPLES OF FINITE PRECISION COMPUTATION

L Vz+1-1z=0.

2. sinz —siny, z = y.

3. 22—y z=y.

4. (1 —cosz)/sinz, z = 0.

5 c=(a?+b% — 2abcosh)/?, a~ b, || < 1.

1.4. Give stable formulae for computing the square root = + iy of a complex
number a + ib.

1.5. [570, 1982] Show how to compute log(1-+z) accurately for all z > —1, includ-
ing for small |z|. Assume that the log function is computed with a relative error
not exceeding u. (Hint: adapt the technique used in §1.14.1.) Hence, by writing
(1+1/n)" =exp(nlog(l+1/n)), show how to compute (1 +1/n)™ accurately for
large n.

1.6. (Smith [1051, 1975]) Type the following numbers into your pocket calculator,
and look at them upside down (you or the calculator):

07734 The famous “__ world” program
38079 Object

318808 Name

35007 Adjective

57738.57734 x 104° Exclamation on finding a bug

3331 A high-quality floating point arithmetic

v31,438,449 Fallen tree trunks

1.7. A condition number for the sample variance (1.4), here denoted by V(z) :
R™ — R, can be defined by

. V(z) - V(z + Az)]| .
= : il < ; =1: .
Ke gglg]sup{ V() |Az;| < €|zs], i=1:n

Show that s | sl
i~ 1 1Ti — Z||Ts
ko =251
CTT -1V
This condition number measures perturbations in x componentwise. A correspond-
ing normwise condition number is

) Viz)—V(z + Az
o = gg%sup{' e F e 20l el < el)
Show that
—2 1/2
. 12__||¢_=2(1+Lw_> > ke
N n—1)V(z) n-1V@)) ="

1.8. (Kahan, Muller, [875, 1989], Francois and Muller [442, 1991]) Consider the
recurrence

Tre1 =111 — (1130 — 3000/zx—1)/zk, @ =11/2, =z, =61/11.

PROBLEMS 33

In exact arithmetic the z; form a monotonically increasing sequence that converges
to 6. Implement the recurrence on your computer or pocket calculator and compare
the computed z3, with the true value 5.998 (to four correct significant figures).
Explain what you see.

The following questions require knowledge of material from later chapters.

1.9. Cramer’s rule solves a 2 x 2 system Az = b according to

d = aj1a22 — @21012,
z1 = (biage — bea12)/d,
To = (aubg — aglbl)/d.

Show that, assuming d is computed exactly (this assumption has little effect on
the final bounds), the computed solution Z satisfies

Iz — |

e = cond(4,z), [|b— Az]le < 3 cond(A™1)]|b]|oo,
T|loo

where 73 = 3u/(1 — 3u), cond(4,z) = | |A7![|A]lz] o /l|Zllcc, and cond(A) =
II|A7!|A|]loo- This forward error bound is as small as that for a backward stable
method (see §§7.2, 7.6), so Cramer’s rule is forward stable for 2 x 2 systems.

1.10. Show that the computed sample variance V= fl(V(z)) produced by the
two-pass formula (1.4) satisfies

V-V
|%

< (n+3)u+ O(u?).

(Note that this error bound does not involve the condition numbers kg or kn
from Problem 1.7, at least in the first-order term. This is a rare instance of an
algorithm that determines the answer more accurately than the data warrants!)

Chapter 2
Floating Point Arithmetic

From 1946-1948 a great deal of quite detailed coding was done.
T he subroutines for floating-point arithmetic were . ..

produced by Alway and myself in 1947 . ..

They were almost certainly the earliest floating-point subroutines.

— J. H. WILKINSON, Turing's Work at the National Physical Laboratory ... (1980)

MATLAB's creator Cleve Moler used to advise foreign visitors
not to miss the country's two most awesome spectacles:
the Grand Canyon, and meetings of IEEE p754.

— MICHAEL L. OVERTON, Numerical Computing
with IEEE Floating Point Arithmetic (2001)

Arithmetic on Cray computers is interesting because it is driven by a
motivation for the highest possible floating-point performance ...
Addition on Cray computers does not have a guard digit,

and multiplication is even less accurate than addition ...

At least Cray computers serve to keep numerical analysts on their toes!

— DAVID GOLDBERG®, Computer Arithmetic (1996)

It is rather conventional to obtain a ‘realistic” estimate

of the possible overall error due to k roundoffs,

when k is fairly large,

by replacing k by \/E in an expression for (or an estimate of)
the maximum resultant error.

— F. B. HILDEBRAND, Introduction to Numerical Analysis (1974)

5In Hennessy and Patterson [562, 1996, §A.12].

35

36 FLOATING POINT ARITHMETIC

2.1. Floating Point Number System

A floating point number system F' C R is a subset of the real numbers whose
elements have the form

y=+mx (L (2.1)
The system F' is characterized by four integer parameters:
e the base B (sometimes called the radiz),
e the precision t, and
e the exponent range emin < € < €max-

The significand® m is an integer satisfying 0 < m < #* — 1. To ensure a unique
representation for each nonzero y € F it is assumed that m > g*=1 if y # 0, so that
the system is normalized. The number 0 is a special case in that it does not have
a normalized representation. The range of the nonzero floating point numbers in
F is given by gemin=1 < |y| < @emax(1 — #7). Values of the parameters for some
machines of historical interest are given in Table 2.1 (the unit roundoff u is defined
on page 38).
Note that an alternative (and more common) way of expressing y is

di | dy di
E+E+"'+Bf)ziﬂex~d1d2-~dt, (2.2)
where each digit d; satisfies 0 < d; < 8 — 1, and d; # 0 for normalized numbers.
We prefer the more concise representation (2.1), which we usually find easier to
work with. This “nonpositional” representation has pedagogical advantages, being
entirely integer based and therefore simpler to grasp. In the representation (2.2),
dy is called the most significant digit and d; the least significant digit.

It is important to realize that the floating point numbers are not equally spaced.
If3=2t=3, émin = —1, and eax = 3 then the nonnegative floating point
numbers are

y=iﬂe<

0, 0.25, 0.3125, 0.3750, 0.4375, 0.5, 0.625, 0.750, 0.875,
1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0.

They can be represented pictorially as follows:

II 1 I‘ 1 1 { ‘ 1 i [
'

I
[T
0 05 1.0 2.0 3.0 4.0 5.0 6.0 7.0

5The significand is often called the mantissa, but strictly speaking the term mantissa should
be used only in conjunction with logarithms.

2.1 FLOATING POINT NUMBER SYSTEM 37

Table 2.1. Floating point arithmetic parameters.

Machine and arithmetic B t €min €max u
Cray-1 single 2 48 8192 8191 4x 107
Cray-1 double 2 96 8192 8191 1x107%°
DEC VAX G format, double | 2 53 —1023 1023 1 x 10~!6
DEC VAX D format, double | 2 56 -127 127 1x10°Y7
HP 28 and 48G calculators 10 12 —499 499 5x 10712
IBM 3090 single 16 6 —64 63 5x1077
IBM 3090 double 16 14 —64 63 1x10716
IBM 3090 extended 16 28 —64 63 2x 10733
IEEE single 2 24 —125 128 6x 1078
IEEE double 2 53 —1021 1024 1x 10716
IEEE extended (typical) 2 64 -—16381 16384 5x 1072

Notice that the spacing of the floating point numbers jumps by a factor 2 at
each power of 2. The spacing can be characterized in terms of machine epsilon,
which is the distance €ps from 1.0 to the next larger floating point number. Clearly,
enm = (%, and this is the spacing of the floating point numbers between 1.0 and
3; the spacing of the numbers between 1.0 and 1/8 is 3~ = €pr/B. The spacing
at an arbitrary r € F is estimated by the following lemma.

Lemma 2.1. The spacing between a normalized floating point number z and an
adjacent normalized floating point number is at least 3~ epr|z| and at most epr|z|.

Proof. See Problem 2.2. 1]

The system F can be extended by including subnormal numbers (also known
as denormalized numbers), which, in the notation of (2.1), are the numbers

min — -1
y = £m x (emin~t 0<m<fp1,

which have the minimum exponent and are not normalized (equivalently, in (2.2)
€ = emin and the most significant digit d; = 0). The subnormal numbers have fewer
digits of precision than the normalized numbers. The smallest positive normalized
floating point number is A = #¢min~1 while the smallest positive subnormal number
is p = (Bmin~t = Xeps. The subnormal numbers fill the gap between A and 0 and
are equally spaced, with spacing the same as that of the numbers of F' between
X and B, namely X\eps = Bmin~t, For example, in the system illustrated above
with 3 =2t =3, emin = —1, and egmax = 3, we have A = 272 and pu = 274, the
subnormal numbers are

0.0625, 0.125, 0.1875,

and the complete number system can be represented as

38 FLOATING POINT ARITHMETIC

Let G C R denote all real numbers of the form (2.1) with no restriction on the
exponent e. If z € R then fl(z) denotes an element of G nearest to , and the
transformation z — fl(z) is called rounding. There are several ways to break ties
when z is equidistant from two floating point numbers, including taking fl(z) to
be the number of larger magnitude (round away from zero) or the one with an
even last digit d; (round to even); the latter rule enjoys impeccable statistics [160,
1973]. For more on tie-breaking strategies see the Notes and References. Note
that rounding is monotonic: z > y implies fl(z) > fi(y).

Although we have defined fl! as a mapping onto G, we are only interested
in the cases where it produces a result in F. We say that fl(z) overflows if
|fl(z)| > max{|y| : y € F } and underflows if 0 < |fl(z)| < min{|y|: 0 £y € F}.
When subnormal numbers are included in F, underflow is said to be gradual.

The following result shows that every real number z lying in the range of F' can
be approximated by an element of F' with a relative error no larger than u = % Bt
The quantity u is called the unit roundoff. It is the most useful quantity associated
with F and is ubiquitous in the world of rounding error analysis.

Theorem 2.2. Ifx € R lies in the range of F then
fllz) =z(1+6), 18] < u. (2.3)
Proof. We can assume that z > 0. Writing the real number z in the form
T=px 37 Bt <u< g,

we see that = lies between the adjacent floating point numbers y; = |x]B°~t and
y2 = [u]Bet. (Strictly, if [x] = B¢ then the floating point representation (2.1) of
yo is [p]/B - Be~1T1.) Thus fl(x) = y; or ¥, and we have

|fl(x) _xl < [1;’2 _yll < 56_1‘

2 - 2
Hence . .
e
filz) —z| . 5P <1ﬁ1—t:u'
T - m X ﬁe—t — 2
The last inequality is strict unless u = 8¢~!, in which case z = fl(z), and hence
the inequality of the theorem is strict. O

Theorem 2.2 says that fl(z) is equal to = multiplied by a factor very close to
1. The representation 1 + § for the factor is the standard choice, but it is not the
only possibility. For example, we could write the factor as e*, with a bound on
|ce| a little less than u (cf. the rp notation in §3.4).

The following modified version of this theorem can also be useful.

2.1 FLOATING POINT NUMBER SYSTEM 39

Theorem 2.3. If z € R lies in the range of F then

fi(z) = 18] < u.

Proof. See Problem 2.4. 1]

The widely used IEEE standard arithmetic (described in §2.3) has 8 = 2 and
supports two precisions. Single precision hast = 24, epin = —125, emax = 128, and
u=2"24~5.96 x 10~%. Double precision has t = 53, emin = —1021, emax = 1024,
and u = 2753 &~ 1.11 x 1076, IEEE arithmetic uses round to even.

It is easy to see that

T = <ﬂt_l+%> X,Be = ’fl(xj:_x ~ %ﬁl_t,
_ 1 . flz) -z g
x-(ﬁ—§>xﬂ - ‘—i:—‘Nzﬁ-

Hence, while the relative error in representing z is bounded by %ﬁl“ (as it must
be, by Theorem 2.2), the relative error varies with = by as miuch as a factor 3.
This phenomenon is called wobbling precision and is one of the reasons why small
bases (in particular, 8 = 2) are favoured. The effect of wobbling precision is
clearly displayed in Figure 2.1, which plots machine numbers z versus the relative
distance from z to the next larger machine number, for 1 < z < 16 in IEEE
single precision arithmetic. In this plot, the relative distances range from about
2723 2 1.19 x 1077 just to the right of a power of 2 to about 2724 ~ 5.96 x 10~8
just to the left of a power of 2 (see Lemma 2.1).

The notion of ulp, or “unit in last place”, is sometimes used when describing
the accuracy of a floating point result. One ulp of the normalized floating point
number y = +0¢ x .d;dy...d; is ulp(y) = 8¢ x .00...01 = G¢~t. If = is any real
number we can say that y and z agree to |y — z|/ ulp(y) ulps in y. This measure of
accuracy “wobbles” when y changes from a power of G to the next smaller floating
point number, since ulp(y) decreases by a factor 3.

In MATLAB the permanent variable eps represents the machine epsilon, epr
(not the unit roundoff as is sometimes thought), while realmax and realmin
represent the largest positive and smallest positive normalized floating point num-
ber, respectively. On a machine using IEEE standard double precision arithmetic
MATLAB returns

>> eps
ans =
2.2204e-016

>> realmax
ans =
1.7977e+308

>> realmin
ans =
2.2251e-308

40 FLOATING POINT ARITHMETIC

12_.'.. .

11

10

Figure 2.1. Relative distance from z to the next larger machine number (8 = 2, t = 24),
displaying wobbling precision.

2.2. Model of Arithmetic

To carry out rounding error analysis of an algorithm we need to make some assump-
tions about the accuracy of the basic arithmetic operations. The most common
assumptions are embodied in the following model, in which z,y € F":

STANDARD MODEL

fl(zopy) = (zopy)(1+), 6] <u, op=+ —%/. (2.4)

It is normal to assume that (2.4) holds also for the square root operation.

Note that now we are using fIl(-) with an argument that is an arithmetic
expression to denote the computed value of that expression. The model says that
the computed value of zopy is “as good as” the rounded exact answer, in the sense
that the relative error bound is the same in both cases. However, the model does
not require that § = 0 when 2 opy € F—a condition which obviously does hold
for the rounded exact answer—so the model does not capture all the features we
might require of floating point arithmetic. This model is valid for most computers,
and, in particular, holds for IEEE standard arithmetic. Cases in which the model
is not valid are described in §2.4.

The following modification of (2.4) can also be used (cf. Theorem 2.3):

_zopy
fllwopy) = 75> ol su (2.5)

2.3 IEEE ARITHMETIC 41

All the error analysis in this book is carried out under the model (2.4), some-
times making use of (2.5). Most results proved using the standard model remain
true with the weaker model (2.6) described below, possibly subject to slight in-
creases in the constants. We identify problems for which the choice of model
significantly affects the results that can be proved.

2.3. IEEE Arithmetic

IEEE standard 754, published in 1985 [655, 1985], defines a binary floating point
arithmetic system. It is the result of several years’ work by a working group of a
subcommittee of the IEEE Computer Society Computer Standards Committee.

Among the design principles of the standard were that it should encourage
experts to develop robust, efficient, and portable numerical programs, enable the
handling of arithmetic exceptions, and provide for the development of transcen-
dental functions and very high precision arithmetic.

The standard specifies floating point number formats, the results of the basic
floating point operations and comparisons, rounding modes, floating point excep-
tions and their handling, and conversion between different arithmetic formats.
Square root is included as a basic operation. The standard says nothing about
exponentiation or transcendental functions such as exp and cos.

Two main floating point formats are defined:

Type | Size | Significand | Exponent | Unit roundoff | Range
32 bits | 2341 bits 8 bits 2724 596 x 1078 10%38
64 bits | 52-+1 bits | 11 bits 2758 ~ 1.11x 10716 | 10%308

Single
Double

In both formats one bit is reserved as a sign bit. Since the floating point numbers
are normalized, the most significant bit is always 1 and is not stored (except for the
denormalized numbers described below). This hidden bit accounts for the “+1” in
the table.

The standard specifies that all arithmetic operations are to be performed as if
they were first calculated to infinite precision and then rounded according to one
of four modes. The default rounding mode is to round to the nearest representable
number, with rounding to even (zero least significant bit) in the case of a tie. With
this default mode, the model (2.4) is obviously satisfied. Note that computing with
a single guard bit (see §2.4) will not always give the same answer as computing
the exact result and then rounding. But the use of a second guard bit and a third
sticky bit (the logical OR of all succeeding bits) enables the rounded exact result
to be computed. Rounding to plus or minus infinity is also supported by the
standard; this facilitates the implementation of interval arithmetic. The fourth
supported mode is rounding to zero (truncation, or chopping).

IEEE arithmetic is a closed system: every arithmetic operation produces a
result, whether it is mathematically expected or not, and exceptional operations
raise a signal. The default results are shown in Table 2.2. The default response
to an exception is to set a flag and continue, but it is also possible to take a trap
(pass control to a trap handler).

A NaN is a special bit pattern that cannot be generated in the course of unex-
ceptional operations because it has a reserved exponent field. Since the significand

42 FLOATING POINT ARITHMETIC

Table 2.2. IEEE arithmetic exceptions and default results.

Exception type | Example | Default result

Invalid operation | 0/0, 0 x oo, v/—1 NaN (Not a Number)
Overflow +o0

Divide by zero Finite nonzero/0 +o0

Underflow Subnormal numbers
Inexact Whenever fl(zopy) #zopy | Correctly rounded result

is arbitrary, subject to being nonzero, a NaN can have something about its prove-
nance encoded in it, and this information can be used for retrospective diagnostics.
A NaN is generated by operations such as 0/0, 0 x 0o, 00/00, (+00) + (—00), and
v/—1. One creative use of the NaN is to denote uninitialized or missing data.
Arithmetic operations involving a NaN return a NaN as the answer. A NaN com-
pares as unordered and unequal with everything including itself (a NaN can be
tested with the predicate £ # z or with the IEEE recommended function isnan,
if provided).

Zero is represented by a zero exponent field and a zero significand, with the
sign bit providing distinct representations for 4+-0 and —0. The standard defines
comparisons so that +0 = —0. Signed zeros provide an elegant way to handle
branch cuts in complex arithmetic; for details, see Kahan [694, 1987].

The infinity symbol is represented by a zero significand and the same exponent
field as a NaN; the sign bit distinguishes between +oo. The infinity symbol obeys
the usual mathematical conventions regarding infinity, such as co + co = o0,
(—1) x 0o = —o0, and (finite) /oo = 0.

The standard requires subnormal numbers to be represented, instead of being
flushed to zero as in many systems. This support of gradual underflow makes it
easier to write reliable numerical software; see Demmel [308, 1984].

The standard may be implemented in hardware or software. The first hardware
implementation was the Intel 8087 floating point coprocessor, which was produced
in 1981 and implements an early draft of the standard (the 8087 very nearly
conforms to the present standard). This chip, together with its bigger and more
recent brothers the Intel 80287, 80387, 80486 and the Pentium series, is used
in IBM PC compatibles (the 80486DX and Pentiums are general-purpose chips
that incorporate a floating point coprocessor). Virtually all modern processors
implement IEEE arithmetic.

The IEEE standard defines minimum requirements for two extended number
formats: single ertended and double extended. The double extended format has
at least 79 bits, with at least 63 bits in the significand and at least 15 in the
exponent; it therefore surpasses the double format in both precision and range,
having unit roundoff v < 5.42 x 10~29 and range at least 104932, The purpose of
the extended precision formats is not to provide for higher precision computation
per se, but to enable double precision results to be computed more reliably (by
avoiding intermediate overflow and underflow) and more accurately (by reducing
the effect of cancellation) than would otherwise be possible. In particular, extended

2.4 ABERRANT ARITHMETICS 43

precision makes it easier to write accurate routines to evaluate the elementary
functions, as explained by Hough [640, 1981].

A double extended format of 80 bits is supported by the Intel chips mentioned
above and the Motorola 680x0 chips (used on early Apple Macintoshes); these
chips, in fact, normally do all their floating point arithmetic in 80-bit arithmetic
(even for arguments of the single or double format). However, double extended is
not supported by Sun SPARCstations or machines that use the PowerPC or DEC
Alpha chips. Furthermore, the extended format (when available) is supported
little by compilers and packages such as Mathematica and Maple. Kahan [698,
1994] notes that “What you do not use, you are destined to lose”, and encourages
the development of benchmarks to measure accuracy and related attributes. He
also explains that

For now the 10-byte Extended format is a tolerable compromise be-
tween the value of extra-precise arithmetic and the price of imple-
menting it to run fast; very soon two more bytes of precision will
become tolerable, and ultimately a 16-byte format ... That kind of
gradual evolution towards wider precision was already in view when
IEEE Standard 754 for Floating-Point Arithmetic was framed.

A possible side effect of the use of an extended format is the phenomenon
of double rounding, whereby a result computed “as if to infinite precision” (as
specified by the standard) is rounded first to the extended format and then to the
destination format. Double rounding (which is allowed by the standard) can give a
different result from that obtained by rounding directly to the destination format,
and so can lead to subtle differences between the results obtained with different
implementations of IEEE arithmetic (see Problem 2.9).

An IEEE Standard 854, which generalizes the binary standard 754, was pub-
lished in 1987 [656, 1987]. It is a standard for floating point arithmetic that is
independent of word length and base (although in fact only bases 2 and 10 are
provided in the standard, since the drafting committee “could find no valid tech-
nical reason for allowing other radices, and found several reasons for not allowing
them” (251, 1988]). Base 10 IEEE 854 arithmetic is implemented in the HP-71B
calculator.

2.4. Aberrant Arithmetics

In the past, not all computer floating point arithmetics adhered to the model
(2.4). The most common reason for noncompliance with the model was that the
arithmetic lacked a guard digit in subtraction. The role of a guard digit is easily
explained with a simple example.

Consider a floating point arithmetic system with base 8 = 2 and ¢t = 3 digits in
the significand. Subtracting from 1.0 the next smaller floating number, we have,
in binary notation,

2! x0.100— __, 2! x 0.100 —
20 x 0.111 2! x 0.0111

21 x 0.0001 = 272 x 0.100

44 FLOATING POINT ARITHMETIC

Notice that to do the subtraction we had to line up the binary points, thereby
unnormalizing the second number and using, temporarily, a fourth digit in the
significand, known as a guard digit. Some old machines did not have a guard digit.
Without a guard digit in our example we would compute as follows, assuming the
extra digits are simply discarded:

21 % 0.100 — . 2! x 0.100 —
20 % 0.111 2! x 0.011 (last digit dropped)

21 x 0.001 = 27! x 0.100

The computed answer is too big by a factor 2 and so has relative error 1! For
machines without a guard digit it is not true that

fllz £ y)=(xxy)(1+9d), [<,
but it is true that
fllz £ y)=z(1+ a) £y(1+), aB=0, |a|+]|0]<u.

Our model of floating point arithmetic becomes

NO GUARD DIGIT MODEL

fllz £ y) =21 +a)xy(1+p), lallbl <, (2.6a)
flzopy) = (zopy)(1+9), |86] <u, op=x,/, (2.6b)

where we have stated a weaker condition on o and 3 that is generally easier to
work with.

Notable examples of machines that lacked guard digits are several models of
Cray computers (Cray 1, 2, X-MP, Y-MP, and C90). On these computers subtract-
ing any power of 2 from the next smaller floating point number gives an answer
that is either a factor of 2 too large (as in the example above—e.g., Cray X-MP
or Y-MP) or is zero (Cray 2). In 1992 Cray announced that it would produce
systems that use IEEE standard double precision arithmetic by 1995.

The lack of a guard digit is a serious drawback. It causes many algorithms
that would otherwise work perfectly to fail some of the time, including Kahan’s
version of Heron’s formula in the next section and compensated summation (see
§4.3). Throughout the book we assume a guard digit is used, unless otherwise
stated.

Kahan has made these interesting historical comments about guard digits [696,
1990

CRAYs are not the first machines to compute differences blighted by
lack of a guard digit. The earliest IBM ’360s, from 1964 to 1967,
subtracted and multiplied without a hexadecimal guard digit until
SHARE, the IBM mainframe user group, discovered why the conse-
quential anomalies were intolerable and so compelled a guard digit to
be retrofitted. The earliest Hewlett-Packard financial calculator, the
HP-80, had a similar problem. Even now, many a calculator (but not
Hewlett-Packard’s) lacks a guard digit.

2.5 EXACT SUBTRACTION 45

2.5. Exact Subtraction

It is an interesting and sometimes important fact that floating point subtraction
is exact if the numbers being subtracted are sufficiently close. The following result
about exact subtraction holds for any base 8.

Theorem 2.4 (Ferguson). If z and y are floating point numbers for which e(z —
y) < min(e(z), e(y)), where e(z) denotes the ezponent of x in its normalized float-
ing point representation, then fl(z—y) = z—y (assuming z—y does not underflow).

Proof. From the condition of the theorem the exponents of z and y differ by
at most 1. If the exponents are the same then fl(z — y) is computed exactly, so
suppose the exponents differ by 1, which can happen only when z and y have the
same sign. Scale and interchange x and y if necessarysothat 5~! <y <1<z < 8,
where (3 is the base. Now z is represented in base [as x;.z5...z; and the exact
difference z = z — y is of the form

1.22...2¢ —
O.y1...Yyt—1¥

Z21.292 ... 2241

But e(z —y) < e(y) and y < 1, so z; = 0. The algorithm for computing z forms
21.22 ...2+1 and then rounds to t digits; since z has at most t significant digits
this rounding introduces no error, and thus z is computed exactly. d

The next result is a corollary of the previous one but is more well known. It
is worth stating as a separate theorem because the conditions of the theorem are
so elegant and easy to check (being independent of the base), and because this
weaker theorem is sufficient for many purposes.

Theorem 2.5 (Sterbenz). If z and y are floating point numbers with y/2 < z <
2y then fl(z —y) = z — y (assuming £ — y does not underflow). 0

With gradual underflow, the condition “assuming z — y does not underflow”
can be removed from Theorems 2.4 and 2.5 (see Problem 2.19).

Theorem 2.5 is vital in proving that certain special algorithms work. A good
example involves Heron’s formula for the area A of a triangle with sides of length
a, b, and c:

A=+/s(s—a)(s—b)(s—c), s=(a+b+c)/2

This formula is inaccurate for needle-shaped triangles: if a =~ b+ ¢ then s ~ a and
the term s — a suffers severe cancellation. A way around this difficulty, devised by
Kahan, is to rename a, b, and ¢ so that a > b > ¢ and then evaluate

A=+ bra)c-@-n)(ct@-b)@+b-0). (@7

The parentheses are essentiall Kahan has shown that this formula gives the area
with a relative error bounded by a modest multiple of the unit roundoff [496, 1991,
Thm. 3], [692, 1983], [701, 1997], [702, 2001] (see Problem 2.23). If a guard digit
is not used in subtraction, however, the computed result can be very inaccurate.

46 FLOATING POINT ARITHMETIC

2.6. Fused Multiply-Add Operation

Some computers have a fused multiply-add (FMA) operation that enables a floating
point multiplication followed by an addition or subtraction, z *y + z or z *xy — 2,
to be performed as though it were a single floating point operation. An FMA
operation therefore commits just one rounding error:

fllzxy*z)=(zxyx*2)(1+46), 6] < u.

The Intel IA-64 architecture, as first implemented on the Intel Itanium chip,
has an FMA instruction [273, 1999), as did the IBM RISC System/6000 and IBM
Power PC before it. The Itanium’s FMA instruction enables a multiply and an
addition to be performed in the same number of cycles as one multiplication or
addition, so it is advantageous for speed as well as accuracy.

An FMA is a welcome capability in that it enables the number of rounding
errors in many algorithms to be approximately halved. Indeed, by using FMAs an
inner product z7y between two n-vectors can be computed with just n rounding
errors instead of the usual 2n — 1, and any algorithm whose dominant operation
is an inner product benefits accordingly.

Opportunities to exploit an FMA are frequent. Consider, for example, New-
ton’s method for solving f(z) = a — 1/z = 0. The method is

-1

=Tk + (1 — zka)zk,

and its quadratic convergence can be seen from 1 — zxi1a = (1 — xa)?. This
method was used on early computers to implement reciprocation in terms of mul-
tiplication and thence division as a/b = a * (1/b) [551, 1946], [1222, 1997], and
this technique is still in use [714, 1997]. Since the computation of x4, from zj
can be expressed as two multiply-adds, the method is attractive when an FMA is
available; an FMA also has the advantage of enabling a correctly rounded quotient
to be achieved more easily [562, 1996, §A.7]. The floating point divide algorithms
for the IA-64 architecture use this Newton-based approach [273, 1999).

An FMA makes it possible to compute an exact representation of the product
of two floating point numbers z and y: by computing@ = fl(zy) and b = fl(zy—a)
with two FMAs, @ + b = zy (see Problem 2.26). Furthermore, clever use of an
FMA enables highly accurate computation of, for example, the determinant of a
2 x 2 matrix (see Problem 2.27).

However, the presence of an FMA introduces some tricky programming lan-
guage issues [700, 1996]. If a programmer writes a*d + c*b how is this expression
to be compiled for a machine with an FMA? There are three possibilities—two
using the FMA and one without it—and they can all yield different answers. An
example of where this question is particularly important is the product of complex
numbers

(z +iy)* (z + iy) = 22 + y° +i(zy — yz).
The product is obviously real, and the right-hand side evaluates as real in IEEE
arithmetic, but if an FMA is employed in evaluating zy — yx then a nonreal result
will generally be obtained.

2.7 CHOICE OF BASE AND DISTRIBUTION OF NUMBERS 47

In the course of solving the quadratic az? — 2bx + ¢ = 0 for z, the expression
V6% — ac must be computed. Can the discriminant under the square root evaluate
to a negative number when b2 > ac? In correctly rounded arithmetic the answer is
no: the monotonicity of rounding implies fI(b?)— fl(ac) > 0 and the floating point
subtraction of these incurs a small relative error and hence produces a nonnegative
result. However, evaluation as fI(fl(b?)—ac) using an FMA can produce a negative
result (for example, if b2 = ac and fI(b?) < b?).

In conclusion, as Kahan [700, 1996] puts it, “[FMAs]| should not be used indis-
criminately”. Unfortunately, compiler writers, in their efforts to obtain maximum
performance, may not give programmers the capability to inhibit FMAs in those
subexpressions where their use can have undesirable effects.

2.7. Choice of Base and Distribution of Numbers

What base [is best for a floating point number system? Most modern computers
use base 2. Most hand-held calculators use base 10, since it makes the calculator
easier for the user to understand (how would you explain to a naive user that 0.1 is
not exactly representable on a base 2 calculator?). IBM mainframes traditionally
have used base 16. Even base 3 has been tried—in an experimental machine called
SETUN, built at Moscow State University in the late 1950s [1208, 1g60].

Several criteria can be used to guide the choice of base. One is the impact
of wobbling precision: as we saw at the end of §2.1, the spread of representation
errors is smallest for small bases. Another possibility is to measure the worst-
case representation error or the mean square representation error. The latter
quantity depends on the assumed distribution of the numbers that are represented.
Brent [160, 1973] shows that for the logarithmic distribution the worst-case error
and the mean square error are both minimal for (normalized) base 2, provided
that the most significant bit is not stored explicitly.

The logarithmic distribution is defined by the property that the proportion of
base 8 numbers with leading significant digit n is

1
logg(n+ 1) —loggn = logg (1 + 5)

It appears that in practice real numbers are logarithmically distributed. In 1938,
Benford [102, 1938] noticed, as had Newcomb [889, 1881] before him, that the early
pages of logarithm tables showed greater signs of wear than the later ones. (He was
studying dirty books!) This prompted him to carry out a survey of 20,229 “real-
life” numbers, whose decimal representations he found matched the logarithmic
distribution closely.

The observed logarithmic distribution of leading significant digits has not been
fully explained. Some proposed explanations are based on the assumption that
the actual distribution is scale invariant, but this assumption is equivalent to
the observation to be explained [1170, 1984). Barlow (67, 1981], [68, 1981], [70,
1988] and Turner [1169, 1982], [1170, 1984)] give useful insight by showing that if
uniformly distributed numbers are multiplied together, then the resulting distri-
bution converges to the logarithmic one; see also Boyle [157, 1994]. Furthermore,
it is an interesting result that the leading significant digits of the numbers ¢,

48 FLOATING POINT ARITHMETIC

k=0,1,2,..., are logarithmically distributed if g is positive and is not a rational
power of 10; when g = 2 and the digit is 7 this is Gelfand’s problem [939, 1981,
pp. 50-51].

The nature of the logarithmic distribution is striking. For decimal numbers,
the digits 1 to 9 are not equally likely to be a leading significant digit. The
probabilities are as follows:

1 2 3 4 5 6 7 8 9
0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

As an example, here is the leading significant digit distribution for the elements of
the inverse of one random 100 x 100 matrix from the normal N(0,1) distribution:

1 2 3 4 5 6 7 8 9
0.334 0.163 0.100 0.087 0.077 0.070 0.063 0.056 0.051

For an entertaining survey of work on the distribution of leading significant digits
see Raimi [968, 1976] (and also the popular article (967, 1969]).

2.8. Statistical Distribution of Rounding Errors

Most rounding error analyses, including all the ones in this book, are designed to
produce worst-case bounds for the error. The analyses ignore the signs of rounding
errors and are often the result of many applications of the triangle inequality and
the submultiplicative inequality. Consequently, although the bounds may well
give much insight into a method, they tend to be pessimistic if regarded as error
estimates.

Statistical statements about the effect of rounding on a numerical process
can be obtained from statistical analysis coupled with probabilistic models of the
rounding errors. For example, a well-known rule of thumb is that a more realistic
error estimate for a numerical method is obtained by replacing the dimension-
dependent constants in a rounding error bound by their square root; thus if the
bound is f(n)u, the rule of thumb says that the error is typically of order /f(n)u
(see, for example, Wilkinson [1232, 1963, pp. 26, 102]). This rule of thumb can be
supported by assuming that the rounding errors are independent random variables
and applying the central limit theorem. Statistical analysis of rounding errors goes
back to one of the first papers on rounding error analysis, by Goldstine and von
Neumann [501, 1951].

As we noted in §1.17, rounding errors are not random. See Problem 2.10 for an
example of how two rounding errors cancel in one particular class of computations.
Forsythe [424, 1959] points out that rounding errors do not necessarily behave like
independent random variables and proposes a random form of rounding (intended
for computer testing) to which statistical analysis is applicable.

Henrici [564, 1962], [565, 1963], [566, 1964] assumes models for rounding er-
rors and then derives the probability distribution of the overall error, mainly in
the context of difference methods for differential equations. Hull and Swenson
[650, 1966] give an insightful discussion of probabilistic models, pointing out that
“There is no claim that ordinary rounding and chopping are random processes, or
that successive errors are independent. The question to be decided is whether or

2.9 ALTERNATIVE NUMBER SYSTEMS 49

not these particular probabilistic models of the processes will adequately describe
what actually happens” (see also the ensuing note by Henrici [567, 1966]). Kahan
[699, 1996] notes that “The fact that rounding errors are neither random nor un-
correlated will not in itself preclude the possibility of modelling them usefully by
uncorrelated random variables. What will jeopardize the utility of such models is
their failure to mimic important properties that actual rounding errors possess.”
In the last sentence Kahan is referring to results such as Theorem 2.5.

Several authors have investigated the distribution of rounding errors under the
assumption that the significands of the operands are from a logarithmic distribu-
tion and for different modes of rounding; see Barlow and Bareiss [72, 1985] and
the references therein.

Other work concerned with statistical modelling of rounding errors includes
that of Tienari [1137, 1970] and Linnainmaa (789, 1975]; see also the discussion of
the CESTAC and PRECISE systems in §26.5.

2.9. Alternative Number Systems

The floating point format is not the only means for representing numbers in finite
precision arithmetic. Various alternatives have been proposed, though none has
achieved widespread use.

A particularly elegant system is the “level index arithmetic” of Clenshaw,
Olver, and Turner, in which a number z > 1 is represented by £ = I + f, where
f€10,1] and

of

z=¢ , o f=In(n(..(nz)...),

where the exponentiation or logarithm is performed ! times (I is the “level”). If
0 < z < 1, then z is represented by the reciprocal of the representation for 1/z.
An obvious feature of the level index system is that it can represent much larger
and smaller numbers than the floating point system, for similar word lengths. A
price to be paid is that as the size of the number increases the precision with
which it is represented shrinks. If [is sufficiently large then adjacent level index
numbers are so far apart that even their exponents in base 10 differ. For very
readable introductions to level index arithmetic see Clenshaw and Olver [240,
1984) and Turner [1171, 1991], and for more details see Clenshaw, Olver, and
Turner [241, 1989]. Level index arithmetic is somewhat controversial in that there
is disagreement about its advantages and disadvantages with respect to floating
point arithmetic; see Demmel [310, 1987]. A number system involving levels has
also been proposed by Matsui and Iri [826, 1981]); in their system, the number of
bits allocated to the significand and exponent is allowed to vary (within a fixed
word size).

Other number systems include those of Swartzlander and Alexopolous [1115,
1975), Matula and Kornerup (831, 1985], and Hamada [539, 1987]. For sum-
maries of alternatives to floating point arithmetic see the section “Alternatives to
Floating-Point—Some Candidates”, in [241, 1989], and Knuth [744, 1998, Chap. 4].

50 FLOATING POINT ARITHMETIC

2.10. Elementary Functions

The term elementary functions refers to the base 2, e and 10 logarithms and
exponentials, and the trigonometric and hyperbolic functions and their inverses.
These functions are much harder to implement than the elementary operations
+,—, %,/ and square root and, as noted earlier, the IEEE arithmetic standard
does not have anything to say about elementary functions.

In the past, elementary function libraries were of variable quality, but with in-
creased demand for high-quality floating point arithmetic, the ability now to build
on IEEE standard elementary operations, and continuing research into elementary
function evaluation, the quality of algorithms and libraries is improving.

Ideally, we would like the computed value of an elementary function at a ma-
chine number to be the correctly rounded result. The tablemaker’s dilemma (see
§1.2) casts doubt on whether this goal is achievable. However, Lindemann’s result
that the exponential of a nonzero algebraic number cannot be algebraic implies
that the exponential of a nonzero machine number cannot be a machine number
or half-way between two machine numbers. Therefore for a given machine number
z and precision ¢t there is a finite m so that computing m digits of e is sufficient
to determine e* correctly rounded to ¢ digits. Similar arguments apply to the
other elementary functions, and so the tablemaker’s dilemma does not occur in
the context of floating point arithmetic [778, 1998]. In extensive computations,
Lefévre, Muller, and Tisserand [778, 1998], (777, 2001] have determined the max-
imum value of m over all double precision IEEE arithmetic numbers (¢t = 53) for
each of the elementary functions. They find that m is usually close to 2¢ = 106.
This knowledge of the worst-case m makes the goal of correctly rounded results
achievable.

Other desirable properties of computed elementary functions are preservation
of monotonicity (e.g., z < y = €* < ¢¥), preservation of symmetries (e.g.,
sin(z) = —sin(—z)), and preservation of mathematical relations and identities
(e.g.,sin(z) € [—1, 1] and cos?(z)+sin®(z) = 1). Unfortunately, these requirements
can conflict. Lefevre, Muller, and Tisserand [778, 1998] note that in IEEE single
precision arithmetic the machine number closest to arctan(23°) is slightly greater
than /2, so a correctly rounded approximation to arctan(23%) necessarily violates
the requirement that arctan(z) € [—ir/2,7/2].

Describing methods for evaluating elementary functions is outside the scope of
this book. Details can be found in the excellent book by Muller [876, 1997], which
is the best overall reference for this topic. Algorithms for evaluating elementary
functions in IEEE arithmetic are developed by Tang [1121, 1989], [1123, 1990],
[1125, 1992], Gal and Bachelis [451, 1991], and Ziv [1285, 1991]. Tang [1124,
1991] gives a very readable description of table lookup algorithms for evaluating
elementary functions, which are used in a number of current chips and libraries.

Algorithms for evaluating complex elementary functions that exploit excep-
tion handling and assume the availability of algorithms for the real elementary
functions are presented by Hull, Fairgrieve, and Tang (649, 1994]. For details of
how elementary functions are evaluated on many of today’s pocket calculators see
Schelin {1016, 1983], as well as Muller [876, 1997].

2.11 AccURACY TESTS 51

Table 2.3. Test arithmetics.

Hardware Software 3x(4/3-1)—1]°
Casio fx-140 (= 1979) 1x107°
Casio fx-992VB (= 1990) 1x10718
HP 48G (1993) 1x 1074
Sharp EL-5020 (1994) 0.0
Pentium III MATLAB 6.1 (2001) 2.2...x1071
486DX WATFOR-77° V3.0 (1988) 2.2...% 10716
486DX FTN 90¢ (1993) 2.2...%x 1071
486DX MS-DOS QBasic 1.1 1.1...x 107 ¢

%[ntegers in the test expression are typed as real constants 3.0, etc., for the Fortran
tests.

b1 % 1079 if 4/3 is stored and recalled from memory.

‘WATCOM Systems Inc.

d9Salford Software/Numerical Algorithms Group, Version 1.2.

€2.2...x 10716 if 4/3 is stored and recalled from a variable.

2.11. Accuracy Tests

How can you test the accuracy of the floating point arithmetic on a computer or
pocket calculator? There is no easy way, though a few software packages are avail-
able to help with the tasks in specific programming languages (see §27.6). There
are, however, a few quick and easy tests that may reveal weaknesses. The following
list is far from comprehensive and good performance on these tests does not imply
that an arithmetic is correct. Results from the tests are given in Tables 2.4-2.5
for the selected floating point arithmetics described in Table 2.3, with incorrect
digits in boldface and underlined. Double precision was used for the compiled
languages. The last column of Table 2.3 gives an estimate of the unit roundoff
(see Problem 2.14). The estimate produced by QBasic indicates that the compiler
used extended precision in evaluating the estimate.

1. (Cody [249, 1982]) Evaluate sin(22) = —8.8513 0929 0403 8759 2169 x 10~3
(shown correct to 21 digits). This is a difficult test for the range reduction
used in the sine evaluation (which brings the argument within the range
[-7/2,7/2], and which necessarily uses an approximate value of), since 22
is close to an integer multiple of .

2. (Cody [249, 1982]) Evaluate 2.5125 = 5.5271 4787 5260 4445 6025 x 104°
(shown correct to 21 digits). One way to evaluate z = z¥ is as z =
exp(ylogz). But to obtain z correct to within a few ulps it is not suffi-
cient to compute exp and log correct to within a few ulps; in other words,
the composition of two functions evaluated to high accuracy is not necessarily
obtained to the same accuracy. To examine this particular case, write

w :=ylogz, z = exp(w).

If w > w+ Aw then z — z + Az, where z + Az = exp(w + Aw) =

52 FLOATING POINT ARITHMETIC

Table 2.4. Sine test.

Machine sin(22)
Exact | —8.8513 0929 0403 8759 x 1073
Casio fx-140 | —8.8513 62 x 1073
Casio fx-992VB | —8.8513 0929 096 x 1073
HP 48G | —8.8513 0929 040 x 1073
Sharp EL-5020 | —8.8513 0915 4 x107°

MATLAB 6.1 | —8.8513 0929 0403 876 x 1072
WATFOR-77 | —8.8513 0929 0403 880 x 1073
FTN 90 | —8.8513 0929 0403 876 x 107°
QBasic | —8.8513 0929 0403 876 x 1073

Table 2.5. Ezponentation test. No entry for last column means same value as previous
column.

Machine 2.51%8 exp(1251og(2.5))
Exact | 5.5271 4787 5260 4446 x 10%° 5.5271 4787 5260 4446 x 10%°
Casio fx-140 | 5.5271 477 x 10%° 55271 463 x 10%°
Casio fx-992VB | 5.5271 4787 526 x 10%°
HP 48G | 5.5271 4787 526 x 10%° 5.5271 4787 377 x 109
Sharp EL-5020 | 5.5271 4787 3 x 10%*° 5.5271 4796 2 x 104°

MATLAB 6.1 | 5.5271 4787 5260 444 x 10*° 5.5271 4787 5260 459 x 10*°

WATFOR-77 | 5.5271 4787 5260 450 x 10%° 5.5271 4787 5260 460 x 104°
FTN 90 | 5.5271 4787 5260 445 x 10*° 5.5271 4787 5260 459 x 10*°
QBasic | 5.5271 4787 5260 444 x 10*°

exp(w) exp(Aw) = exp(w)(1 + Aw), so Az/z = Aw. In other words, the
relative error of z depends on the absolute error of w and hence on the size
of w. To obtain z correct to within a few ulps it is necessary to use extra
precision in calculating the logarithm and exponential [256, 1980, Chap. 7].

3. (Karpinski [715, 1985]) A simple test for the presence of a guard digit on a
pocket calculator is to evaluate the expressions

9/27x3 -1, 9/27+3—0.5—0.5,

which are given in a form that can be typed directly into most four-function
calculators. If the results are equal then a guard digit is present. Otherwise
there is probably no guard digit (we cannot be completely sure from this
simple test). To test for a guard digit on a computer it is best to run one of
the diagnostic codes described in §27.5.

2.12. Notes and References

The classic reference on floating point arithmetic, and on all aspects of rounding er-
ror analysis, is Wilkinson’s Rounding Errors in Algebraic Processes (REAP) [1232,

2.12 NOTES AND REFERENCES 53

1963]. Wilkinson was uniquely qualified to write such a book, for not only was
he the leading expert in rounding error analysis, but he was one of the architects
and builders of the Automatic Computing Engine (ACE) at the National Physical
Laboratory [1226, 1954]. The Pilot (prototype) ACE first operated in May 1950,
and an engineered version was later sold commercially as the DEUCE Computer
by the English Electric Company. Wilkinson and his colleagues were probably
the first to write subroutines for floating point arithmetic, and this enabled them
to accumulate practical experience of floating point arithmetic much earlier than
anyone else [395, 1976], [1243, 1980].

In REAP, Wilkinson gives equal consideration to fixed point and floating point
arithmetic. In fixed point arithmetic, all numbers are constrained to lie in a range
such as [—1,1], as if the exponent were frozen in the floating point representation
(2.1). Preliminary analysis and the introduction of scale factors during the com-
putation are needed to keep numbers in the permitted range. We consider only
floating point arithmetic in this book. REAP, together with Wilkinson’s second
book, The Algebraic Figenvalue Problem (AEP) [1233, 1965), has been immensely
influential in the areas of floating point arithmetic and rounding error analysis.

Wilkinson’s books were preceded by the paper “Error Analysis of Floating-
Point Computation” [1228, 1960], in which he presents the model (2.4) for floating
point arithmetic and applies the model to several algorithms for the eigenvalue
problem. This paper has hardly dated and is still well worth reading.

Another classic book devoted entirely to floating point arithmetic is Sterbenz’s
Floating-Point Computation [1062, 1974]. It contains a thorough treatment of low-
level details of floating point arithmetic, with particular reference to IBM 360 and
IBM 7090 machines. It also contains a good chapter on rounding error analysis
and an interesting collection of exercises. R. W. Hamming has said of this book,
“Nobody should ever have to know that much about floating-point arithmetic.
But I'm afraid sometimes you might” [942, 1988]. Although Sterbenz’s book is
now dated in some respects, it remains a useful reference.

A third important reference on floating point arithmetic is Knuth’s Seminu-
merical Algorithms [744, 1998, Sec. 4.2], from his Art of Computer Programming
series. Knuth’s lucid presentation includes historical comments and challenging
exercises (with solutions).

The first analysis of floating point arithmetic was given by Samelson and
Bauer [1009, 1953). Later in the same decade Carr [205, 1959] gave a detailed
discussion of error bounds for the basic arithmetic operations.

An up-to-date and very readable reference on floating point arithmetic is the
survey paper by Goldberg [496, 1991], which includes a detailed discussion of IEEE
arithmetic. A less mathematical, more hardware-oriented discussion can be found
in the appendix “Computer Arithmetic” written by Goldberg that appears in the
book on computer architecture by Hennessy and Patterson [562, 1996].

A fascinating historical perspective on the development of computer floating
point arithmetics, including background to the development of the IEEE standard,
can be found in the textbook by Patterson and Hennessy [929, 1998, §4.12].

The idea of representing floating point numbers in the form (2.1) is found, for
example, in the work of Forsythe [428, 1969], Matula [830, 1970], and Dekker [302,
1971].

54 FLOATING POINT ARITHMETIC

An alternative definition of fl(z) is the nearest y € G satisfying |y| < |z|.
This operation is called chopping, and does not satisfy our definition of rounding.
Chopped arithmetic is used in the IBM/370 floating point system.

The difference between chopping and rounding (to nearest) is highlighted by a
discrepancy in the index of the Vancouver Stock Exchange in the early 1980s [963,
1983]. The exchange established an index in January 1982, with the initial value of
1000. By November 1983 the index had been hitting lows in the 520s, despite the
exchange apparently performing well. The index was recorded to three decimal
places and it was discovered that the computer program calculating the index
was chopping instead of rounding to produce the final value. Since the index was
recalculated thousands of times a day, each time with a nonpositive final error, the
bias introduced by chopping became significant. Upon recalculation with rounding
the index almost doubled!

When there is a tie in rounding, two possible strategies are to round to the
number with an even last digit and to round to the one with an odd last digit.
Both are stable forms of rounding in the sense that

fil((z+y) —v) +y) —y) = fi((z+y) —v),

as shown by Reiser and Knuth [982, 1975], (744, 1998, Sec. 4.2.2, Thm. D]. For
other rules, such as round away from zero, repeated subtraction and addition
of the same number can yield an increasing sequence, a phenomenon known as
drift. For bases 2 and 10 rounding to even is preferred to rounding to odd. After
rounding to even a subsequent rounding to one less place does not involve a tie.
Thus we have the rounding sequence 2.445, 2.44, 2.4 with round to even, but
2.445, 2.45, 2.5 with round to odd. For base 2, round to even causes computations
to produce integers more often [706, 1979] as a consequence of producing a zero
least significant bit. Rounding to even in the case of ties seems to have first been
suggested by Scarborough in the first edition (1930) of [1014, 1950]. Hunt [651,
1997] notes that in the presentation of meteorological temperature measurements
round to odd is used as a tie-breaking strategy, and he comments that this may
be to avoid the temperatures 0.5°C and 32.5°F being rounding down and the
incorrect impression being given that it is freezing.

Predictions based on the growth in the size of mathematical models solved as
the memory and speed of computers increase suggest that floating point arithmetic
with unit roundoff v ~ 10732 will be needed for some applications on future
supercomputers (57, 1989g).

The model (2.4) does not fully describe any floating point arithmetic. It is
merely a tool for error analysis—one that has been remarkably successful in view
of our current understanding of the numerical behaviour of algorithms. There
have been various attempts to devise formal models of floating point arithmetic,
by specifying sets of axioms in terms of which error analysis can be performed.
Some attempts are discussed in §27.7.4. No model yet proposed has been truly
successful. Priest [955, 1992] conjectures that the task of “encapsulating all that
we wish to know about floating point arithmetic in a single set of axioms” is
impossible, and he gives some motivation for this conjecture.

Under the model (2.4), floating point arithmetic is not associative with respect

to any of the four basic operations: (a[op]b)[op]c # a[op]|(b[op|c), op = +, —, *, /,

2.12 NOTES AND REFERENCES G5

where afop]b := fl(aop b). Nevertheless, floating point arithmetic enjoys some
algebraic structure, and it is possible to carry out error analysis in the
algebra”. Fortunately, it was recognized by Wilkinson and others in the 1950s
that this laboured approach is unnecessarily complicated, and that it is much
better to work with the exact equations satisfied by the computed quantities. As
Parlett (925, 1990] notes, though, “There have appeared a number of ponderous
tomes that do manage to abstract the computer’s numbers into a formal structure
and burden us with more jargon.”

A draft proposal of IEEE Standard 754 is defined and described in [657, 1981).
That article, together with others in the same issue of the journal Computer,
provides a very readable description of IEEE arithmetic. In particular, an excellent
discussion of gradual underflow is given by Coonen [270, 1981]. A draft proposal
of IEEE Standard 854 is presented, with discussion, in [253, 1984].

W. M. Kahan of the University of California at Berkeley received the 1989
ACM Turing Award for his contributions to computer architecture and numerical
analysis, and in particular for his work on IEEE floating point arithmetic standards
754 and 854. For interesting comments by Kahan on the development of IEEE
arithmetic and other floating point matters, see [1029, 1998], 1251, 1997],

An interesting examination of the implications of the IEEE standard for high-
level languages such as Fortran is given by Fateman [405, 1982]. Topics discussed
include trap handling and how to exploit NaNs. For an overview of hardware
implementations of IEEE arithmetic, and software support for it, see Cody [251,
1988].

Producing a fast and correct implementation of IEEE arithmetic is a difficult
task. Correctness is especially important for a microprocessor (as opposed to a
software) implementation, because of the logistical difficulties of correcting errors
when they are found. In late 1994, much publicity was generated by the discovery
of a flaw in the floating point divide instruction of Intel’s Pentium chip. Because
of some missing entries in a lookup table on the chip, the FPDIV instruction could
give as few as four correct significant decimal digits for double precision floating
point arguments with certain special bit patterns [1036, 1994], [380, 1997]. The
flaw had been discovered by Intel in the summer of 1994 during ongoing testing of
the Pentium processor, but it had not been publically announced. In October 1994,
a mathematician doing research into prime numbers independently discovered the
flaw and reported it to the user community. Largely because of the way in which
Intel responded to the discovery of the flaw, the story was reported in national
newspapers (e.g., the New York Times [816, 1994]) and generated voluminous
discussion on Internet newsgroups (notably comp.sys.intel). Intel corrected
the bug in 1994 and, several weeks after the bug was first reported, offered to
replace faulty chips. For a very readable account of the Pentium FPDIV bug
story, see Moler [866, 1995]. To emphasize that bugs in implementations of floating
point arithmetic are far from rare, we mention that the Calculator application in
Microsoft Windows 3.1 evaluates f1(2.01 — 2.00) = 0.0.

Computer chip designs can be tested in two main ways: by software simulations
and by applying formal verification techniques. Formal verification aims to prove
mathematically that the chip design is correct, and this approach has been in use
by chip manufacturers for some time [491, 1995]. Some relevant references are

56 FLOATING POINT ARITHMETIC

Barrett [79, 1989] for the Inmos T800 (or Shepherd and Wilson [1037, 1989] for
a more informal overview), and Moore, Lynch, and Kaufmann [871, 1998] and
Russinoff [1003, 1998] for AMD processors.

For low-level details of computer arithmetic several textbooks are available.
We mention only the recent and very thorough book by Parhami [921, 2000].

The floating point operation op (op = +, —, *, or /) is monotonic if fl(aop b) <
fl(cop d) whenever a, b, ¢, and d are floating point numbers for which aop b <
cop d and neither fl(aopb) nor fl(copd) overflows. IEEE arithmetic is mono-
tonic, as is any correctly rounded arithmetic. Monotonic arithmetic is important
in the bisection algorithm for finding the eigenvalues of a symmetric tridiagonal
matrix; see Demmel, Dhillon, and Ren [320, 1995], who give rigorous correctness
proofs of some bisection implementations in floating point arithmetic. Ferguson
and Brightman [410, 1991] derive conditions that ensure that an approximation
to a monotonic function preserves the monotonicity on a set of floating point
numbers.

On computers of the 1950s, (fixed point) multiplication was slower than (fixed
point) addition by up to an order of magnitude (773, 1980, Apps. 2, 3]. For
most modern computers it is a rule of thumb that a floating point addition and
multiplication take about the same amount of time, while a floating point division
is 2-10 times slower, and a square root operation (in hardware) is 1-2 times slower
than a division.

During the design of the IBM 7030, Sweeney [1116, 1965] collected statistics
on the floating point additions carried out by selected application programs on
an IBM 704. He found that 11% of all instructions traced were floating point
additions. Details were recorded of the shifting needed to align floating point
numbers prior to addition, and the results were used in the design of the shifter
on the IBM 7030.

The word bit, meaning binary digit, first appeared in print in a 1948 paper of
Claude E. Shannon, but the term was apparently coined by John W. Tukey [1160,
1984]. The word byte, meaning a group of (usually eight) bits, did not appear in
print until 1959 [173, 1981].

The earliest reference we know for Theorem 2.5 is Sterbenz [1062, 1974, Thm.
4.3.1). Theorem 2.4 is due to Ferguson [409, 19g5), who proves a more general
version of the theorem that allows for trailing zero digits in z and y. A variation
in which the condition is 0 < y < z < y+ (3¢, where e = min{j : 87 > y}, is
stated by Ziv [1285, 1991] and can be proved in a similar way.

For more on the choice of base, see Cody (255, 1973] and Kuki and Cody (754,
1973]. Buchholz’s paper Fingers or Fists? [172, 1959] on binary versus decimal
representation of numbers on a computer deserves mention for its clever title,
though the content is only of historical interest.

The model (2.4) ignores the possibility of underflow and overflow. To take
underflow into account the model must be modified to

fllzopy) = (opy)(L+6)+mn, op=+—,%/ (2.8)

As before, || < u. If underflow is gradual, as in IEEE arithmetic, then |n| <
%,Bem“'" = Au, which is half the spacing between the subnormal numbers (A =
[emin~1 is the smallest positive normalized floating point number); if underflows

PROBLEMS 57

are flushed to zero then || < A. Only one of § and 7 is nonzero: ¢ if no underflow
occurs, otherwise 7. With gradual underflow the absolute error of an underflowed
result is no greater than the smallest (bound for the) absolute error that arises
from an operation fl(z op y) in which the arguments and result are normalized.
Moreover, with gradual underflow we can take 7 = 0 for op = +, — (see Prob-
lem 2.19). For more details, and a thorough discussion of how error analysis of
standard algorithms is affected by using the model (2.8), see the perceptive paper
by Demmel [308, 1984]. Another relevant reference is Neumaier [884, 1985].

Hauser [553, 1996] gives a thorough and very readable treatment of exception
handling, covering underflow, overflow, indeterminate or undefined cases, and their
support in software.

An important problem not considered in this chapter is the conversion of num-
bers between decimal and binary representations. These conversions are needed
whenever numbers are read into a computer or printed out. They tend to be
taken for granted, but if not done carefully they can lead to puzzling behaviour,
such as a number read in as 0.1 being printed out as 0.099...9. To be precise,
the problems of interest are (a) convert a number represented in decimal nota-
tion to the best binary floating point representation of a given precision, and (b)
given a binary floating point number, print a correctly rounded decimal represen-
tation, either to a given number of significant digits or to the smallest number of
significant digits that allows the number to be re-read without loss of accuracy.
Algorithms for solving these problems are given by Clinger [247, 1990] and Steele
and White {1060, 1990]; Gay [470, 1990] gives some improvements to the algo-
rithms and C code implementing them. Precise requirements for binary-decimal
conversion are specified in the IEEE arithmetic standard. A program for testing
the correctness of binary—decimal conversion routines is described by Paxson [930,
1991). Early references on base conversion are Goldberg [497, 1967] and Matula
(829, 1968], (830, 1970]. It is interesting to note that, in Fortran or C, where the
output format for a “print” statement can be precisely specified, most compilers
will, for an (in)appropriate choice of format, print a decimal string that contains
many more significant digits than are determined by the floating point number
whose value is being represented.

Other authors who have analysed various aspects of floating (and fixed) point
arithmetic include Diamond [339, 1978], Urabe [1174, 1968], and Feldstein, Good-
man, and co-authors [510, 1975), 407, 1982], [511, 1985], 408, 1986]. For a survey
of computer arithmetic up until 1976 that includes a number of references not
given here, see Garner [460, 1976].

Problems

T he exercise had warmed my blood,
and | was beginning to enjoy myself amazingly.

— JOHN BUCHAN, The Thirty-Nine Steps (1915)
2.1. How many normalized numbers and how many subnormal numbers are there

in the system F defined in (2.1) with emin < € < emax? What are the figures for
IEEE single and double precision (base 2)?

58 FLOATING POINT ARITHMETIC

2.2. Prove Lemma 2.1.

2.3. In IEEE arithmetic how many double precision numbers are there between
any two adjacent nonzero single precision numbers?

2.4. Prove Theorem 2.3.
2.5. Show that

oo}

01=>) (27 +27% 1)

i=1

and deduce that 0.1 has the base 2 representation 0.0001100 (repeating last 4
bits). Let Z = fI(0.1) be the rounded version of 0.1 obtained in binary IEEE
single precision arithmetic (u = 272%). Show that (z — Z)/z = —1u.

2.6. What is the largest integer p such that all integers in the interval [—p, p] are
exactly representable in IEEE double precision arithmetic? What is the corre-
sponding p for IEEE single precision arithmetic?

2.7. Which of the following statements is true in IEEE arithmetic, assuming that
a and b are normalized floating point numbers and that no exception occurs in the
stated operations?

fl(aopb) = fl(bopa), op= +,*.

fl(b—a) = —fl(a—10).

flla+a) = fl(2xa).

fL0.5 % a) = fl(a/2).

fl((@a+b) +¢)= flla+ (b+c)).

6. a < fl((a+b)/2) < b, given that a < b.

Ao - S o

2.8. Show that the inequalities a < fl((a + b)/2) < b, where a and b are floating
point numbers with a < b, can be violated in base 10 arithmetic. Show that
a < fl{a+ (b—a)/2) <bin base § arithmetic, for any 8.

2.9. What is the result of the computation v/1 — 2-53 in IEEE double precision
arithmetic, with and without double rounding from an extended format with a
64-bit significand?

2.10. A theorem of Kahan [496, 1991, Thm. 7] says that if 3 = 2 and the arith-
metic rounds as specified in the IEEE standard, then for integers m and n with
|m| < 281 and n = 2¢ + 27 (some i, j), fl((m/n) * n) = m. Thus, for example,
fl((1/3)*3) =1 (even though fI(1/3) # 1/3). The sequence of allowable n begins
1,2,3,4,5,6,8,9,10,12,16,17,18,20, so Kahan’s theorem covers many common
cases. Test the theorem on your computer.

2.11. Investigate the leading significant digit distribution for numbers obtained
as follows.

1 k™, n=0:1000 for £ = 2 and 3.
2. n!, n = 1: 1000.

PROBLEMS 959

3. The eigenvalues of a random symmetric matrix.
4. Physical constants from published tables.
5. From the front page of the London Times or the New York Times.

(Note that in writing a program for the first case you can form the powers of 2 or
3 in order, following each multiplication by a division by 10, as necessary, to keep
the result in the range [1, 10]. Similarly for the second case.)

2.12. (Edelman [379, 1994]) Let = be a floating point number in IEEE double
precision arithmetic satisfying 1 < z < 2. Show that fl(z * (1/z)) is either 1 or
1 — €/2, where € = 2752 (the machine epsilon).

2.13. (Edelman [379, 1994]) Consider IEEE double precision arithmetic. Find the
smallest positive integer j such that fl(z * (1/z)) # 1, where z = 1 + je, with
€ = 2752 (the machine epsilon).

2.14. Kahan has stated that “an (over-)estimate of u can be obtained for almost
any machine by computing |3 x (4/3 — 1) — 1| using rounded floating-point for
every operation”. Test this estimate against 4 on any machines available to you.

2.15. What is 09 in IEEE arithmetic?

2.16. Evaluate these expressions in any IEEE arithmetic environment available
to you. Are the values returned what you would expect? (None of the results is
specified by the IEEE standard.)

190,

2%,

exp(00), exp(—00).
sign(NaN), sign(—NaN).
NaN°.

oo,

lNaN

RIS

8. log(0o), log(—0), log(0).

2.17. Let zmax denote the largest representable number in IEEE single or double
precision arithmetic. In what circumstances does 2zmayx not overflow?

2.18. Can Theorem 2.4 be strengthened to say that fl(z —y) is computed exactly
whenever the exponents of £ > 0 and y > 0 differ by at most 17

2.19. (Hauser [553, 1996]) Show that with gradual underflow, if z and y are
floating point numbers and fl(z + y) underflows then fl(z +y) =z +y.

2.20. Two requirements that we might ask of a routine for computing /z in
floating point arithmetic are that the identities Vz? = |z| and (\/Z)? = |z| be
satisfied. Which, if either, of these is a reasonable requirement?

2.21. Are there any floating point values of and y (excepting values both 0, or
so huge or tiny as to cause overflow or underflow) for which the computed value

of z/+/z? + y? exceeds 17

60 FLOATING POINT ARITHMETIC

2.22. (Kahan) A natural way to compute the maximum of two numbers = and y
is with the code

% max(z,y)
if > y then
max =z

else
max =y
end

Does this code always produce the expected answer in IEEE arithmetic?

2.23. Prove that Kahan’s formula (2.7) computes the area of a triangle accurately.
(Hint: you will need one invocation of Theorem 2.5.)

2.24. (Kahan) Describe the result of the computation y = (2 +z) — z on a binary
machine with a guard digit and one without a guard digit.

2.25. (Kahan) Let f(z) = (((z —0.5) + z) — 0.5) + z. Show that if f is evaluated
as shown in single or double precision binary IEEE arithmetic then f(z) # 0 for
all floating point numbers z.

2.26. Show that if z and y are floating point numbers and @ = fl(zy) and b=

fl(zy — @) are computed using fused multiply-add operations, then @ ~b=azy.
2.27. (Kahan) Show that with the use of a fused multiply-add operation the al-
gorithm

w = be
e=w—be
z=(ad—w)+e

computes z = det([2 5]) with high relative accuracy.

2.28. Suppose we have an iterative algorithm for computing z = z/y. Derive a
convergence test that terminates the iteration (only) when full accuracy has been
achieved. Assume the use of IEEE arithmetic with gradual underflow (use (2.8)).

Chapter 3
Basics

A method of inverting the problem of round-off error is proposed
which we plan to employ in other contexts and

which suggests that it may be unwise to

separate the estimation of round-off error

from that due to observation and truncation.

— WALLACE J. GIVENS, Numerical Computation of the
Characteristic Values of a Real Symmetric Matrix (1954)

T he enjoyment of one's tools is an essential ingredient of successful work.

— DONALD E. KNUTH, The Art of Computer Programming,
Volume 2, Seminumerical Algorithms (1998)

T he subject of propagation of rounding error,

while of undisputed importance in numerical analysis,

is notorious for the difficulties which it presents when it is to be
taught in the classroom in such a manner that the student is
neither insulted by lack of mathematical content

nor bored by lack of transparence and clarity.

— PETER HENRICI, A Model for the Propagation
of Rounding Error in Floating Arithmetic (1980)

T he two main classes of rounding error analysis are not,
as my audience might imagine, ‘backwards’ and ‘forwards’,
but rather ‘one’'s own' and ‘other people's’.

One’s own is, of course, a model of lucidity;

that of others serves only to obscure the

essential simplicity of the matter in hand.

— J. H. WILKINSON, T he State of the Art in Error Analysis (1985)

61

62 Basics

Having defined a model for floating point arithmetic in the last chapter, we now
apply the model to some basic matrix computations, beginning with inner prod-
ucts. This first application is simple enough to permit a short analysis, yet rich
enough to illustrate the ideas of forward and backward error. It also raises the
thorny question of what is the best notation to use in an error analysis. We in-
troduce the “y,” notation, which we use widely, though not exclusively, in the
book. The inner product analysis leads immediately to results for matrix—vector
and matrix-matrix multiplication.

Also in this chapter we determine a model for rounding errors in complex
arithmetic, derive some miscellaneous results of use in later chapters, and give a
high-level overview of forward error analysis and backward error analysis.

3.1. Inner and Outer Products

Consider the inner product s, = z7y, where =,y € R™. Since the order of evalua-
tion of s, = z1y; +- - - + T,y affects the analysis (but not the final error bounds),
we will assume that the evaluation is from left to right. (The effect of particular
orderings is discussed in detail in Chapter 4, which considers the special case of
summation.) In the following analysis, and throughout the book, a hat denotes a
computed quantity.

Let s; = z1y; + - -+ + z;y; denote the ith partial sum. Using the standard
model (2.4), we have

51 = fl(z1y1) = 7191 (1 + 1),
2 = fU(81 + z2y2) = (81 + z2y2(1 + 62)) (1 + 63)
= (z191(1 +61) + T2y2(1 + 62)) (1 + 83)
=21y1(1 + 61)(1 + 83) + z2y2(1 + 82)(1 + 63), (3.1)

where [6;| < u, i = 1: 3. For our purposes it is not necessary to distinguish between
the different §; terms, so to simplify the expressions let us drop the subscripts on
the §; and write 1 +6; =1+ 6. Then

53 = fl(gz + x3y3) = (32 + x3y3(1 + 5))(1 + (5)
= (z191(1 £ 6)% + z2y2(1 £ 6)* + z3y3(1 £ 6)) (1 + 6)
= 2191(1 £ 6)° + z2y(1 £ 6)® + T3y3(1 £ 6)%

The pattern is clear. Overall, we have
S =211 (1 £0)" + 2oy2(1 £ 6™ + z3ya(1 £0)" + - + (1 £6)%. (3.2)

There are various ways to simplify this expression. A particularly elegant way is
to use the following result.

3.1 INNER AND OUTER PRODUCTS 63

Lemma 3.1. If |6;] < u and p; = £1 fori = 1:n, and nu < 1, then

[T +6:)y =1+6,,
=1
where
nu

0, <
|"|_1—nu

I
3

Proof. See Problem 3.1. 0

The 6,, and -y,, notation will be used throughout this book. Whenever we write
~, there is an implicit assumption that nu < 1, which is true in virtually any
circumstance that might arise with IEEE single or double precision arithmetic.

Applying the lemma to (3.2) we obtain

Sn=a1y1 (1 + 6n) + T2yo(1 + 0) + z3ys(L+ On—1) + - - + Tnyn (1 + 62). (3.3)

This is a backward error result and may be interpreted as follows: the computed
inner product is the exact one for a perturbed set of data zi,...,z,, ¥, (1 +
0n),y2(1+86.),...,yn(1+62) (alternatively, we could perturb the z; and leave the
y; alone). Each relative perturbation is certainly bounded by «, = nu/(1 — nu),
so the perturbations are tiny.

The result (3.3) applies to one particular order of evaluation. It is easy to see
that for any order of evaluation we have, using vector notation,

fUay) = (z+ A)Ty =2T(y+ Ay), |Az| < lel, Ayl <alyl, (3:4)

where |z| denotes the vector with elements |z;| and inequalities between vectors
(and, later, matrices) hold componentwise.
A forward error bound follows immediately from (3.4):

Ty — fUeTY)| < Y D l7ivil = nlz|T lyl- (3.5)

i=1

If y = z, so that we are forming a sum of squares x7z, this result shows that high
relative accuracy is obtained. However, in general, high relative accuracy is not
guaranteed if |27y| < |z|7|y|.

It is easy to see that precisely the same results (3.3)-(3.5) hold when we use the
no-guard-digit rounding error model (2.6). For example, expression (3.1) becomes
82 = z1y1(1 4 61)(1 + 83) + z2y2(1 + 82)(1 + d4), where &4 has replaced a second
occurrence of é3, but this has no effect on the error bounds.

It is worth emphasizing that the constants in the bounds above can be reduced
by focusing on particular implementations of an inner product. For example, if
n = 2m and we compute

s; = z(1:m)Ty(l: m)
sy =x(m+ L:n)Ty(m + 1:n)
Sn = 81 + 82

64 Basics

then |s, — S| < vn/2+1]xT||y|. By accumulating the inner product in two pieces
we have almost halved the error bound. This idea can be generalized by break-
ing the inner product into k pieces, with each mini inner product of length n/k
being evaluated separately and the results summed. The error bound is now
fyn/k+,c_l|zT||y|, which achieves its minimal value of 72\/5_1|xT|Iy| for k = /n
(or, rather, we should take k to be the nearest integer to \/n). But it is possible
to do even better by using pairwise summation of the products z;y; (this method
is described in §4.1). With pairwise summation, the error bound becomes

Isn —8n| < Yllog, n1+1IITHy|-

Since many of the error analyses in this book are built upon the error analysis
of inner products, it follows that the constants in these higher-level bounds can
also be reduced by using one of these nonstandard inner product implementations.
The main significance of this observation is that we should not attach too much
significance to the precise values of the constants in error bounds.

Inner products are amenable to being calculated in extended precision. If the
working precision involves a t-digit significand then the product of two floating
point numbers has a significand of 2t — 1 or 2t digits and so can be represented
exactly with a 2¢-digit significand. Some computers always form the 2¢-digit prod-
uct before rounding to t digits, thus allowing an inner product to be accumulated
at 2t-digit precision at little or no extra cost, prior to a final rounding.

The extended precision computation can be expressed as fI(fl.(zTy)), where
fl. denotes computations with unit roundoff u. (u. < u). Defining 8, = fl.(z7y),
the analysis above holds with u replaced by . in (3.3) (and with the subscripts on
the 6; reduced by 1 if the multiplications are done exactly). For the final rounding
we have

fUSlea™y)) = 3a(1+0), 18] <u,

and so, overall,
NUe
2Ty = FUSI)] < ulaTyl + T (1 4+)Ty

Hence, as long as nuc|z|T|y| < u|zTy|, the computed inner product is about as
good as the rounded exact inner product. The effect of using extended precision
inner products in an algorithm is typically to enable a factor n to be removed from
the overall error bound.

Because extended precision inner product calculations are machine dependent
it has always been difficult to write portable programs that use them, but the
widespread adoption of IEEE arithmetic and the development of the Extended
and Mixed Precision BLAS (see §27.10) make portability much easier to achieve
now. Most modern numerical codes (for example, those in EISPACK, LINPACK,
and LAPACK) do not use extended precision inner products. One process in which
these more accurate products are needed is the traditional formulation of iterative
refinement, in which the aim is to improve the accuracy of the computed solution
to a linear system (see Chapter 12).

We have seen that computation of an inner product is a backward stable pro-
cess. What can be said for an outer product A = zy”, where z,y,€ R®? The

3.2 THE PURPOSE OF ROUNDING ERROR ANALYSIS 65

analysis is easy. We have a;; = z;y; (1 + d;5), |0:5] < u, so
A=zyT + 4, 14| < ulzyT]. (3.6)

This is a satisfying result, but the computation is not backward stable. In fact,
A = (z + Az)(y + Ay)T does not hold for any Az and Ay (let alone a small Az
and Ay) because Aisnot in general a rank-1 matrix.

This distinction between inner and outer products illustrates a general princi-
ple: a numerical process is more likely to be backward stable when the number of
outputs is small compared with the number of inputs, so that there is an abun-
dance of data onto which to “throw the backward error”. An inner product has
the minimum number of outputs for its 2n scalar inputs, and an outer product
has the maximum number (among standard linear algebra operations).

3.2. The Purpose of Rounding Error Analysis

Before embarking on further error analyses, it is worthwhile to consider what a
rounding error analysis is designed to achieve. The purpose is to show the existence
of an a priori bound for some appropriate measure of the effects of rounding errors
on an algorithm. Whether a bound exists is the most important question. Ideally,
the bound is small for all choices of problem data. If not, it should reveal features of
the algorithm that characterize any potential instability and thereby suggest how
the instability can be cured or avoided. For some unstable algorithms, however,
there is no useful error bound. (For example, no bound is known for the loss of
orthogonality due to rounding error in the classical Gram—-Schmidt method; see
§19.8.)

The constant terms in an error bound (those depending only on the problem
dimensions) are the least important parts of it. As discussed in §2.8, the constants
usually cause the bound to overestimate the actual error by orders of magnitude.
It is not worth spending much effort to minimize constants because the achievable
improvements are usually insignificant.

It is worth spending effort, though, to put error bounds in a concise, easily
interpreted form. Part of the secret is in the choice of notation, which we discuss
in §3.4, including the question of what symbols to choose for variables (see the
discussion in Higham (611, 1998, §3.5]).

If sharp error estimates or bounds are desired they should be computed a
posteriori, so that the actual rounding errors that occur can be taken into account.
One approach is to use running error analysis, described in the next section. Other
possibilities are to compute the backward error explicitly, as can be done for linear
equation and least squares problems (see §§7.1, 7.2, 20.7, and 21.2), or to apply
iterative refinement to obtain a correction that approximates the forward error
(see Chapter 12).

3.3. Running Error Analysis

The forward error bound (3.5) is an a priori bound that does not depend on the
actual rounding errors committed. We can derive a sharper, a posteriori bound
by reworking the analysis. The inner product evaluation may be expressed as

66 Basics

S0 = 0
fori=1:n

S§; = 8i—-1 t+ Ty
end

Write the computed partial sums as S; =: s; + ¢; and let 2; := fl(z;y;). We have,

using (2.5),
= LiYi

zi=T+—6i,

Similarly, (1 + €;)8; = 8;_, + 2;, where |¢;| < u, or

16| <u = 2=z — ;2.

8;+ e+ €3 =s8i-1 +e—1+ 3y — 6%
Hence e; = e;_; — €;5; — 6;Z;, which gives
leil < lei—1] + ulsi] + ulzil.
Since eg = 0, we have |e,| < up,, where
pi = i1 + |55 + |23, po = 0.

Algorithm 3.2. Given z,y € R™ this algorithm computes s = fl(z7y) and a
number g such that |s — z7y| < p.

s=0

p=0

fori=1:n
z =z
s=s+z
p=pt|s|+ |z

end

B=pxu

This type of computation, where an error bound is computed concurrently with
the solution, is called running error analysis. The underlying idea is simple: we
use the modified form (2.5) of the standard rounding error model to write

lz op y — fl(z op y)| < ulfl(z op y)l,

which gives a bound for the error in zop y that is easily computed, since fl(zopy)
is stored on the computer. Key features of a running error analysis are that few in-
equalities are involved in the derivation of the bound and that the actual computed
intermediate quantities are used, enabling advantage to be taken of cancellation
and zero operands. A running error bound is, therefore, usually smaller than an
a priori one.

There are, of course, rounding errors in the computation of the running error
bound, but their effect is negligible for nu <« 1 (we do not need many correct
significant digits in an error bound).

Running error analysis is a somewhat neglected practice nowadays, but it was
widely used by Wilkinson in the early years of computing. It is applicable to
almost any numerical algorithm. Wilkinson explains [1245, 1986}:

3.4 NOTATION FOR ERROR ANALYSIS 67

When doing running error analysis on the ACE at no time did I write
down these expressions. I merely took an existing program (without
any error analysis) and modified it as follows. As each arithmetic
operation was performed I added the absolute value of the computed
result (or of the dividend) into the accumulating error bound.

For more on the derivation of running error bounds see Wilkinson {1244, 1985] or
[1245, 1986]. A running error analysis for Horner’s method is given in §5.1.

3.4. Notation for Error Analysis
Another way to write (3.5) is
|y — fl(zTy)| < nule|T|y| + O(u®). (3.7)

In general, which form of bound is preferable depends on the context. The use of
first-order bounds such as (3.7) can simplify the algebra in an analysis. But there
can be some doubt as to the size of the constant term concealed by the big-oh
notation. Furthermore, in vector inequalities an O(u?) term hides the structure of
the vector it is bounding and so can make interpretation of the result difficult; for
example, the inequality [z —y| < nu|z|+O(u?) does not imply that y approximates
every element of with the same relative error (indeed the relative error could be
infinite when z; = 0, as far as we can tell from the bound).

In more complicated analyses based on Lemma 3.1 it is necessary to manipulate
the 1 + 6 and <, terms. The next lemma provides the necessary rules.

Lemma 3.3. For any positive integer k let 0 denote a quantity bounded according
to |0k| < v, = ku/(1 — ku). The following relations hold:

(1 +6k)(1+0;) =14 Okyj,
ﬂ_{uew, j <k,
1+6; | 1+0ke2;, 7>k,
VeV < Ymin(k,j) for max(j, k)u < 1/2,
e < Yiks
Ve + U < Vet1s
Ye T+ WY S Ve

Proof. See Problem 3.4. 1]

Concerning the second rule in Lemma 3.3, we certainly have

k j
[T+ 5,-)*1/ [T +6)% =1+ 6k,
i=1 1=1

but if we are given only the expression (1 +6k)/(1+6;) and the bounds for 6« and
6;, we cannot do better than to replace it by 0425 for j > k.

68 Basics

In some error analyses it is not worth the trouble to keep precise track of the
constants in the «; terms. The notation

_ cku

T 1—cku
is then useful, where ¢ denotes a small integer constant whose exact value is unim-
portant. Thus we can write, for example, 3v, = 4,, MYy, = ", = Ymn, and

Y2 +v3(1 +79s5) = A1
Another style of writing bounds is made possible by the following lemma.

Yk (3.8)

Lemma 3.4. If |§;| < u fori=1:n and nu < 0.01, then

n

[Ta+6)=1+n,,

i=1
where |1,| < 1.01nu.
Proof. We have

n

[Ja+6)-1

i=1

7| = <(1+u)"” -1

Since 1 + z < e* for £ > 0, we have (1 + u)™ < exp(nu), and so

(nu)® | (nu)®

l4+uw)*—1<nu+) TR
<nu(1+@+(@)2+(@)3+m>
2 2 2
_ 1
=M T2
1
< nu0,995 < 1.01nu. 1]

Note that this lemma is slightly stronger than the corresponding bound we can
obtain from Lemma 3.1: |6,| < nu/(1 — nu) < nu/0.99 = 1.0101. .. nu.
Lemma 3.4 enables us to derive, as an alternative to (3.5),

2Ty — fU(z"y)| < 1.01nulz|T|y|. (3.9)

A convenient device for keeping track of powers of 1+ § terms was introduced
by Stewart {1065, 1973, App. 3]. His relative error counter <k> denotes a product

k
<k>=[Ja+6&)y, p=%1, [&<u (3.10)
=1

The counters can be manipulated using the rules

<G><k> = <j+ k>,
<j>

=<j+ k>.
<k> I+

3.5 MATRIX MULTIPLICATION 69

At the end of an analysis it is necessary to bound |<k> — 1|, for which any of the
techniques described above can be used.

Wilkinson explained in {1244, 1985] that he used a similar notation in his
research, writing ¢" for a product of r factors 1+ d; with |d;| < u. He also derived
results for specific values of n before treating the general case—a useful trick of
the trade!

An alternative notation to fI(-) to denote the rounded value of a number or
the computed value of an expression is [-], suggested by Kahan. Thus, we would
write [a + [bc]) instead of fl(a + fl(bc)).

A completely different notation for error analysis was proposed by Olver [903,
1978], and subsequently used by him and several other authors. For scalars z and
y of the same sign, Olver defines the relative precision rp as follows:

y ~z; rp(a) means that y=e’z, |J| <c.
Since €% = 1 + 6 + O(62), this definition implies that the relative error in z as an
approximation to y (or vice versa) is at most a + O(a?). But, unlike the usual
definition of relative error, the relative precision possesses the properties of

symmetry: y=z; rp(a) <= z=y; rp(@),
additivity: y= x; rp(a) and z=y; rp(8) = z=z; rp(a+ B).

Proponents of relative precision claim that the symmetry and additivity properties
make it easier to work with than the relative error.

Pryce [956, 1981] gives an excellent appraisal of relative precision, with many
examples. He uses the additional notation 1(§) to mean a number 6 with 6 =~
1; rp(8). The 1(d) notation is the analogue for relative precision of Stewart’s
<k> counter for relative error. In later papers, Pryce extends the rp notation to
vectors and matrices and shows how it can be used in the error analysis of some
basic matrix computations [957, 1984], [958, 1985].

Relative precision has not achieved wide use. The important thing for an error
analyst is to settle on a comfortable notation that does not hinder the thinking
process. It does not really matter which of the notations described in this section
is used, as long as the final result is informative and expressed in a readable form.

3.5. Matrix Multiplication

Given error analysis for inner products it is straightforward to analyse matrix—
vector and matrix-matrix products. Let A € R™*", £ € R", and y = Az. The
vector y can be formed as m inner products, y; = al'z, i = 1: m, where af is the
ith row of A. From (3.4) we have

Ui = (0 + Aa)Tz, |Aas| < y,ladl.
This gives the backward error result

§=(A+A44), |AAl<ylAl (AeR™m), (311)

70 Basics

which implies the forward error bound
ly = 3 < 1ol Allz]. (3.12)
Normwise bounds readily follow (see Chapter 6 for norm definitions): we have
ly =#lle < WmllAlpllelp, = 1,00,
and for the 2-norm, using Lemma 6.6,
lly = Fll2 < min(m, n)*/2 v, | All2|zl2.
This inner product formation of y can be expressed algorithmically as

% Sdot or inner product form.

y(l:m) =0
fori=1:m
forj=1:n
y(@) = y(@) + a4, 4)z())
end
end

The two loops can be interchanged to give

% Saxpy form.
y(l:m) =0
forj=1:n
fori=1:m
y(9) = y(3) + a(,)z ()
end
end

The terms “sdot” and “saxpy” come from the BLAS (see §C.1). Sdot stands for
(single precision) dot product, and saxpy for (single precision) a times z plus y.
The question of interest is whether (3.11) and (3.12) hold for the saxpy form. They
do: the saxpy algorithm still forms the inner products af z, but instead of forming
each one in turn it evaluates them all “in paralle]”, a term at a time. The key
observation is that exactly the same operations are performed, and hence eractly
the same rounding errors are committed—the only difference is the order in which
the rounding errors are created.

This “rounding error equivalence” of algorithms that are mathematically iden-
tical but algorithmically different is one that occurs frequently in matrix compu-
tations. The equivalence is not always as easy to see as it is for matrix-vector
products.

Now consider matrix multiplication: C = AB, where A € R™*" and B €
R™*P, Matrix multiplication is a triple loop procedure, with six possible loop
orderings, one of which is

C(1l:m,1:p) =0
fori=1:m

3.6 COMPLEX ARITHMETIC 71

for j=1:p
fork=1:n
C(i,j) = Ci,j) + AGi, k)B(k,3)
end
end
end

As for the matrix—-vector product, all six versions commit the same rounding errors,
so it suffices to consider any one of them. The “jik” and “jki” orderings both
compute C a column at a time: ¢; = Abj, where ¢; = C(:,7) and b; = B(,j).
From (3.11),
¢ =(A+ 445)b;, A4 <mlAl

Hence the jth computed column of C has a small backward error: it is the exact
jth column for slightly perturbed data. The same cannot be said for C as a whole
(see Problem 3.5 for a possibly large backward error bound). However, we have
the forward error bound

|C—C| <v,JAl|IBl (A €R™", BeR™P), (3.13)
and the corresponding normwise bounds include
IC = Cllp < YallAllp|Bllp, p=1,00,F.

The bound (3.13) falls short of the ideal bound |C — C| < v,|C|, which says that
each component of C is computed with high relative accuracy. Nevertheless (3.13)
is the best bound we can expect, because it reflects the sensitivity of the product
to componentwise relative perturbations in the data: for any 7 and j we can find a
perturbation AA with |AA| < u|A| such that |[(A + AA)B — AB|;; = u(|A||B|)i;
(similarly for perturbations in B).

3.6. Complex Arithmetic

To carry out error analysis of algorithms in complex arithmetic we need a model for
the basic arithmetic operations. Since complex arithmetic must be implemented
using real arithmetic, the complex model is a consequence of the corresponding
real one. We will assume that for complex numbers £ = a + ib and y = ¢ + id we
compute

zry=axc+i(bxd), (3.14a)
zy = ac — bd + i(ad + bc), (3.14b)

ac+bd . bc—ad
z/y=

. .14
2+d & (8.14c)

Lemma 3.5. For z,y € C the basic arithmetic operations computed according to
(3.14) under the standard model (2.4) satisfy
fllx+y) = (z+y)(1 +9), |6] < u,
fl(zy) = zy(1 + 9), 6] < V2,
fi(z/y) = (z/y)(1 + 9), 18] < V2.

72 BaAsics

Proof. Throughout the proof, §; denotes a number bounded by |5;| < u.
Addition/subtraction:
fllz+y) =(a+c)(1+61) +i(b+d)(1 + d2)
=z+y+ (a+c)d +i(b+d)d2,
o)
flle+y) = @+ y)* < (la+cf + b+ dP)u? = (Jz + ylu)?,

as required.
Multiplication:

fl(zy) = (ac(l + 81) — bd(1 + 62)) (1 + 63)
+i(ad(1 + 64) +be(1 + 85))(1 + 86)
= ac(l +6y) — bd(1 +65) +i(ad(1 + 65) + be(1 +63"))
=y +e,
where
lel® < 73 ((lac| + [bdl)? + (|ad| + |be])?)
< 293 (a® 4 6%)(c® + d?)

= 293|ayl?,
as required.
Division:
fl(c®+d%) = (A(1+81) + d*(1 + 82)) (1 + 63)
=c3(1+6;) +d*(1+6))
= (c® +d*)(1+65).
Then

ac(l 4 04) + bd(1 +d5)) (1 + e
fl(Rex/y) = ((+(Zz)+d2)((1+95’2)';()
ac(1+604") + bd(1 +65")
(2 +d?)(1+63)
=Rez/y + e,

where, using Lemma 3.3,
lac| + |bd|
el < oy e

Using the analogous formula for the error in fI(Imz/y),

(lac| + [bd)? + (Ibe] +|ad])® ,
! —z/yl* <

|f (.I?/y) x/yl = (02 T d2)2 Y4

2(a® +b%)(* +d?) ,

@+ayp *

= 2vlz/yl,

3.7 MISCELLANY 73

which completes the proof. O

It is worth stressing that ¢ in Lemma 3.5 is a complex number, so we cannot
conclude from the lemma that the real and imaginary parts of fl(z op y) are
obtained to high relative accuracy—only that they are obtained to high accuracy
relative to |z op y|.

As explained in §27.8, the formula (3.14c) is not recommended for practical
use since it is susceptible to overflow. For the alternative formula (27.1), which
avoids overflow, similar analysis to that in the proof of Lemma 3.5 shows that

fUlz/y) = (z/y)A+8), 18] < V2.

Bounds for the rounding errors in the basic complex arithmetic operations
are rarely given in the literature. Indeed, virtually all published error analyses
in matrix computations are for real arithmetic. However, because the bounds of
Lemma 3.5 are of the same form as for the standard model (2.4) for real arithmetic,
most results for real arithmetic (including virtually all those in this book) are valid
for complex arithmetic, provided that the constants are increased appropriately.

3.7. Miscellany

In this section we give some miscellaneous results that will be needed in later
chapters. The first three results provide convenient ways to bound the effect of
perturbations in a matrix product. The first two results use norms and the third,
components.

Lemma 3.6. If X; + AX; € R™ "™ satisfies |AX;|| < 6;||X;|| for all j for a
consistent norm, then

[T +ax) -1 x5 < (H(l +6;) — 1) 1T 1x;1.
=0 =0 j=0 j=0

Proof. The proof is a straightforward induction, which we leave as an exercise
(Problem 3.9). 0

The second lemma is a variation on the first, with an analogous proof that
employs the inequality in Problem 6.5. It is useful when analysing Householder
transformations (see Chapter 19).

Lemma 3.7. If X; + AX; € R™™ satisfies || AX||r < ;]| X;]l2 for all j, then

Fﬁ(ﬁ(1+5j)—1>11j]||xj||2- 0

Jj=0

m m

[T6G+ax) - T]x;

=0 j=0

In comparing the last lemma with Lemma 3.6 for the Frobenius norm, note
that the product || X, ||z ... || Xk|l2 can be much smaller than | X1 | ¢ ... || Xk| 7; the
extreme case occurs when the X; are orthogonal.

A componentwise result is entirely analogous.

74 Basics
Lemma 3.8. If X; + AX; € R™*" satisfies |AX;| < 6;|X;]| for all j, then

<(Ma+s-1) . o

=0 =0

m m

[+ax:) - T]x;

7=0 7=0

The final result describes the computation of the “rank-1 update” y = (I —
ab?)z, which is an operation arising in various algorithms, including the Gram-
Schmidt method and Householder QR factorization.

Lemma 3.9. Let a,b,z € R™ and let y = (I — ab?)z be computed as § = fl(z —
a(bTz)). Then § =y + Ay, where

|4yl < Yoya (T + [al 6T]lzl,

so that
1Ayll2 < Ypps(L + flall2]lbll2) [z

Proof. Consider first the computation of w = a(bTz). We have

0 := (a+ Aa)bT($ + Az), |Aal < ulal, |Az| < Tnlzl,
= a(bTz) + a(bT Az) + Aad” (z + Az)
= w+ Aw,

where
|Aw| < (Y +u(l +7,))lal |67 ||z

Finally, § = fl(z — W) satisfies
g=z—a(bTe) - dw+ Ay, |Ay| < u(le|+ |D),
and
|~ Aw+ Ay | < ule] + [allbTl2]) + (1 + u) (1, + ul(l +7,))al b |-
Hence § = y + Ay, where '

|Ay| < [ul + Qu +u® + 7, + 2wy, +uy,)lal[b7|] ||
< Vnys(+la|pT)z|. O

3.8. Error Analysis Demystified

The principles underlying an error analysis can easily be obscured by the details.
It is therefore instructive to examine the basic mechanism of forward and backward
error analyses. We outline a general framework that reveals the essential simplicity.

Consider the problem of computing z = f(a), where f : R® — R™. Any
algorithm for computing z can be expressed as follows. Let ;1 = a and zx4+; =
gk(zk), k = 1:p, where

Ti1 = [2:] , & € R.

3.8 ERROR ANALYSIS DEMYSTIFIED 75

The kth stage of the algorithm represents a single floating point operation and
contains the original data together with all the intermediate quantities computed
so far. Finally, z = Iz,.1, where T is comprised of a subset of the columns of
the identity matrix (so that each z; is a component of z,41). In floating point
arithmetic we have

Tr+1 = i (Th) + ATky1,

where Az represents the rounding errors on the kth stage and should be easy
to bound. We assume that the functions g are continuously differentiable and
denote the Jacobian of gx at a by Jx. Then, to first order,

Ty = g1(a) + Az,

T3 = go(T2) + Azz = 92(91(a) + Az2) + Az
= g92(91(a)) + J2Az2 + Az,

T4 = 93(T3) + Az4 = g3(92(91(a)) + JoAzz + Ax3) + Ay
=33 (92(91) + J3J2Axp + J3Azs + Axy.

The pattern is clear: for the final Z = Z,,1 we have

z=1[gp(...02(01(a))...) + Jp... 2Az2 + J,... J3Azg + - -

+ JpAiL'p + Ail}p+1]
Az,
_ Az
=fla)y+1I[Jp... J2y..., Jp, 1] : =: f(a) + Jh.
A$p+1

In a forward error analysis we bound f(a) — 2, which requires bounds for
(products of) the Jacobians Jx. In a backward error analysis we write, again to
first order,

fla)+Jh=%= f(a+ Aa) = f(a) + JfAa,

where J; is the Jacobian of f. So we need to solve, for Aa,

Jf Ada =J b, g=p(n+ (p+1)/2).
LN P S
mxn nxl mxg gx1

In most matrix problems there are fewer outputs than inputs (m < n), so this
is an underdetermined system. For a normwise backward error analysis we want
a solution of minimum norm. For a componentwise backward error analysis, in
which we may want (for example) to minimize € subject to |Aa| < ¢|al, we can
write

Jh=J;D-D7'Aa =: Be, D = diag(a;),

and then we want the solution ¢ of minimal co-norm.

The conclusions are that forward error analysis corresponds to bounding deriva-
tives and that backward error analysis corresponds to solving a large underdeter-
mined linear system for a solution of minimal norm. In principal, therefore, error
analysis is straightforward! Complicating factors in practice are that the Jacobians

76 Basics

Jx may be difficult to obtain explicitly, that an error bound has to be expressed
in a form that can easily be interpreted, and that we may want to keep track of
higher-order terms.

3.9. Other Approaches

In this book we do not describe all possible approaches to error analysis. Some
others are mentioned in this section.

Linearized rounding error bounds can be developed by applying equations that
describe, to first order, the propagation of absolute or relative errors in the el-
ementary operations +, —, %, /. The basics of this approach are given in many
textbooks (see, for example, Dahlquist and Bjérck [289, 1974, §2.2] or Stoer and
Bulirsch [1086, 1980, §1.3]), but for a thorough treatment see Stummel [1094,
1980}, [1095, 1981]. Ziv [1286, 1995] shows that linearized bounds can be turned
into true bounds by increasing them by a factor that depends on the algorithm.

Rounding error analysis can be phrased in terms of graphs. This appears to
have been first suggested by McCracken and Dorn (833, 1964], who use “process
graphs” to represent a numerical computation and thereby to analyse the prop-
agation of rounding errors. Subsequent more detailed treatments include those
of Bauer [93, 1974, Miller [852, 1976], and Yalamov [1263, 1995]. The work on
graphs falls under the heading of automatic error analysis (for more on which see
Chapter 26) because processing of the large graphs required to represent prac-
tical computations is impractical by hand. Linnainmaa [790, 1976] shows how
to compute the Taylor series expansion of the forward error in an algorithm in
terms of the individual rounding errors, and he presents a graph framework for
the computation.

Some authors have taken a computational complexity approach to error anal-
ysis, by aiming to minimize the number of rounding error terms in a forward error
bound, perhaps by rearranging a computation. Because this approach ignores the
possibility of cancellation of rounding errors, the results need to be interpreted
with care. See Aggarwal and Burgmeier (7, 1979] and Tsao [1162, 1983].

3.10. Notes and References

The use of Lemma 3.1 for rounding error analysis appears to originate with the
original German edition [1085, 1972] of a book by Stoer and Bulirsch [1086, 1980].
The lemma is also used, with p; = 1, by Shampine and Allen [1031, 1973, p. 18].

The notation 7,, in (3.8) was suggested to the author by Beresford Parlett and
replaces the more clumsy notation ,,, used in the first edition of this book.

Lemma 3.4 is given by Forsythe and Moler [431, 1967, p. 92]. Wilkinson made
frequent use of a slightly different version of Lemma 3.4 in which the assumption
is nu < 0.1 and the bound for |7, | is 1.06nu (see, e.g., [1233, 1965, p. 113]).

A straightforward notation for rounding errors that is subsumed by the nota-
tion described in this chapter is suggested by Scherer and Zeller {1017, 1980].

Ziv (1284, 1982] proposes the relative error measure

d(z,y) = |lz — yll/ max(ll|l, lll)

PROBLEMS 77

for vectors z and y and explains some of its favourable properties for error analysis.

Wilkinson [1233, 1965, p. 447 gives error bounds for complex arithmetic;
Olver [904, 1983] does the same in the relative precision framework. Demmel {308,
1984] gives error bounds that extend those in Lemma 3.5 by taking into account
the possibility of underflow.

Henrici [568, 1980] gives a brief, easy-to-read introduction to the use of the
model (2.4) for analysing the propagation of rounding errors in a general algorithm.
He uses a set notation that is another possible notation to add to those in §3.4.

The perspective on error analysis in §3.8 was suggested by J. W. Demmel.

Problems

3.1. Prove Lemma 3.1.

3.2. (Kietbasiniski and Schwetlick [734, 1988], [735, 1992]) Show that if p; = 1 in
Lemma 3.1 then the stronger bound |0,| < nu/(1 — 3nu) holds for nu < 2.

3.3. One algorithm for evaluating a continued fraction

bo

ap +
0 b

a) +

b
az+---+ =

An+1

is
gn+1 = Qn41
for k =n:-1:0
Gk = ak + bk /qr41
end

Derive a running error bound for this algorithm.
3.4. Prove Lemma 3.3.

3.5. (Backward error result for matrix multiplication.) Let A € R®*™ and B €
R™ ™ both be nonsingular. Show that fi(AB) = (A + AA)B, where |A4]| <
7,|A||B||B~!|, and derive a corresponding bound in which B is perturbed.

3.6. (Backward error definition for matrix multiplication.) Let A € R™*™ and
B € R™*? be of full rank and suppose C =~ AB. Define the componentwise
backward error

w=min{e:C = (A+ AA)(B+ AB), |AA|<¢€E, |AB|<¢eF},

where F and F' have nonnegative entries. Show that

w > max 1+M—1 ,
%.J Gij

where R = C— AB and G = EF. Explain why the definition of w makes sense only
when A and B have full rank. Define a mixed backward/forward error applicable
to the general case.

78 Basics

3.7. Give analogues of the backward error results (3.4) and (3.11) for complex z,
y, and A.

3.8. Which is the more accurate way to compute z2 — y2: as x2 — y? or as (z +
y)(z —y)? (Note that this computation arises when squaring a complex number.)

3.9. Prove Lemma 3.6.
3.10. Let A,,..., A € R™*™. Show that

Az ... Ak — fl(Ar ... AR)llr < (kn*u+ O(u?)) [Asllz - .. | Axll2-

3.11. (Kahan [690, 1980]) Consider this MATLAB function, which returns the
absolute value of its first argument = € R™:

function z = absolute(x, m)

y =x.72;
for i=1:m
y = sqrt(y);
end
z =Y,
for i=1:m-1
z=2."2;
end

Here is some output from a Pentium III workstation (which uses IEEE standard
double precision arithmetic):

> x = [.25 .5 .75 1.25 1.5 2]; z = absolute(x, 50); [x; z]
ans =
0.2500 0.5000 0.7500 1.2500 1.5000 2.0000
0.2375 0.4724 0.7316 1.1331 1.4550 1.8682

Give an error analysis to explain the results.

3.12. Consider the quadrature rule
b n
1) = [fa@)de~ > wida) = I(5),
a =1

where the weights w; and nodes z; are assumed to be floating point numbers.
Assuming that the sum is evaluated in left-to-right order and that

fUf(z)) = fle) (L +m), || <,

~ ~

obtain and interpret a bound for |I(f) — J(f)|, where J(f) = fI(J(f))-

Chapter 4
Summation

| do hate sums.
There is no greater mistake than to call arithmetic an exact science.

There are ... hidden laws of Number

which it requires a mind like mine to perceive.

For instance, if you add a sum from the bottom up,
and then again from the top down,

the result is always different.

— MRS. LA TOUCHE’

Joseph Fourier introduced this delimited) -notation in 1820,
and it soon took the mathematical world by storm.

— RONALD L. GRAHAM, DONALD E. KNUTH, and
OREN PATASHNIK, Concrete Mathematics (1994)

One of the major difficulties in a practical [error] analysis
is that of description.
An ounce of analysis follows a pound of preparation.

— BERESFORD N. PARLETT, Matrix Eigenvalue Problems (1965)

7Quoted in Mathematical Gazette (819, 1924].

79

80 SUMMATION

Sums of floating point numbers are ubiquitous in scientific computing. They occur
when evaluating inner products, means, variances, norms, and all kinds of non-
linear functions. Although at first sight summation might appear to offer little
scope for algorithmic ingenuity, the usual “recursive summation” (with various
orderings) is just one of a variety of possible techniques. We describe several
summation methods and their error analyses in this chapter. No one method is
uniformly more accurate than the others, but some guidelines can be given on the
choice of method in particular cases.

4.1. Summation Methods

In most circumstances in scientific computing we would naturally translate a sum
S, z; into code of the form

s=0
fori=1:n

s=8+uzx;
end

This is known as recursive summation. Since the individual rounding errors de-
pend on the operands being summed, the accuracy of the computed sum § varies
with the ordering of the z;. (Hence Mrs. La Touche, quoted at the beginning
of the chapter, was correct if we interpret her remarks as applying to floating
point arithmetic.) Two interesting choices of ordering are the increasing order
|z1] < [z2]| < -+ <|zn|, and the decreasing order |z1| > |z2| > -+ > |zn|.

Another method is pairwise summation (also known as cascade summation, or
fan-in summation), in which the z; are summed in pairs according to

Yi = Toi—1 +Toi, 1=1: '_%J (Y(n+1)/2 = Zn if n is odd),

and this pairwise summation process is repeated recursively on the y;, 7 = 1: [(n+
1)/2]. The sum is obtained in llog, n] stages. For n = 6, for example, pairwise
summation forms

Se = ((x1 + 22) + (x3 + 24)) + (25 +).

Pairwise summation is attractive for parallel computing, because each of the
[logy] stages can be done in parallel [629, 1988, §5.2.2].

A third summation method is the insertion method. First, the x; are sorted
by order of increasing magnitude (alternatively, some other ordering could be
used). Then z; + z, is formed, and the sum is inserted into the list zo,...,z,,
maintaining the increasing order. The process is repeated recursively until the
final sum is obtained. In particular cases the insertion method reduces to one of
the other two. For example, if z; = 2°~!, the insertion method is equivalent to
recursive summation, since the insertion is always to the bottom of the list:

1248 — 348 — 78 — 15

4.2 ERROR ANALYSIS 81

On the other hand, if 1 <z; < 25 < --- <z, < 2, every insertion is to the end of
the list, and the method is equivalent to pairwise summation if n is a power of 2;
for example, if 0 < € < 1/2,

1, 1+€, 14+2¢, 1+3¢ — 142, 143,24+ — 24¢ 245 — 4+6e.

To choose between these methods we need error analysis, which we develop in
the next section.

4.2. Error Analysis

Error analysis can be done individually for the recursive, pairwise, and insertion
summation methods, but it is more profitable to recognize that each is a special
case of a general algorithm and to analyse that algorithm.

Algorithm 4.1. Given numbers z,...,, this algorithm computes S, = 3", z;.

Let S = {z1,...,z,}.

repeat while S contains more than one element
Remove two numbers z and y from S
and add their sum z + y to S.

end

Assign the remaining element of S to S,,.

Note that since there are n numbers to be added and hence n — 1 additions to be
performed, there must be precisely n — 1 executions of the repeat loop.

First, let us check that the previous methods are special cases of Algorithm 4.1.
Recursive summation (with any desired ordering) is obtained by taking z at each
stage to be the sum computed on the previous stage of the algorithm. Pairwise
summation is obtained by [log, n| groups of executions of the repeat loop, in each
group of which the members of S are broken into pairs, each of which is summed.
Finally, the insertion method is, by definition, a special case of Algorithm 4.1.

Now for the error analysis. Express the ith execution of the repeat loop as
T; = i, + yi;- The computed sums satisfy (using (2.5))

T=% 6:| <u, i=1lin—1. (4.1)
The local error introduced in forming ﬁ is 6iﬁ-. The overall error is the sum of
the local errors (since summation is a linear process), so overall we have

Eni=S8—5.=) 6T (4.2)
The smallest possible error bound is therefore

n—1
|Enl <u_ |Ti. (4.3)
i=1

82 SUMMATION

(This is actually in the form of a running error bound, because it contains the
computed quantities—see §3.3.) It is easy to see that [T;| < 2;;1 || + O(w) for
each 7, and so we have also the weaker bound

|En| < (n— l)uilmil + O(u?). (4.4)

i=1

This is a forward error bound. A backward error result showing that S, is the
exact sum of terms z;(1 + €;) with |e;| < 7,,_; can be deduced from (4.1), using
the fact that no number z; takes part in more than n — 1 additions.

The following criterion is apparent from (4.2) and (4.3):

In designing or choosing a summation method to achieve high ac-
curacy, the aim should be to minimize the absolute values of the
intermediate sums 7T;.

The aim specified in this criterion is surprisingly simple to state. However, even
if we concentrate on a specific set of data the aim is difficult to achieve, because
minimizing the bound in (4.3) is known to be NP-hard [708, 2000]. Some insight
can be gained by specializing to recursive summation.

For recursive summation, T;_; = S; := E;zl z;, and we would like to choose

the ordering of the z; to minimize 37 , |S;|. This is a combinatorial optimization
problem that is too expensive to solve in the context of summation. A reasonable
compromise is to determine the ordering sequentially by minimizing, in turn, |z],
|§2|, ey |§n_1|. This ordering strategy, which we denote by Psum, can be imple-
mented with O(nlogn) comparisons. If we are willing to give up the property that
the ordering is influenced by the signs of the z; we can instead use the increasing
ordering, which in general will lead to a larger value of 3"~ , |S;| than that for the
Psum ordering. If all the x; have the same sign then all these orderings are equiv-
alent. Therefore when summing nonnegative numbers by recursive summation the
increasing ordering is the best ordering, in the sense of having the smallest a priori
forward error bound.

How does the decreasing ordering fit into the picture? For the summation of
positive numbers this ordering has little to recommend it. The bound (4.3) is no
smaller, and potentially much larger, than it is for the increasing ordering. Fur-
thermore, in a sum of positive terms that vary widely in magnitude the decreasing
ordering may not allow the smaller terms to contribute to the sum (which is why
the harmonic sum Y. _;1/i “converges” in floating point arithmetic as n — o).
However, consider the example with n = 4 and

z=[1, M, 2M, -3M], (4.5)

where M is a floating point number so large that fI(1+M) = M (thus M > u™!).
The three orderings considered so far produce the following results:

Increasing: S, = fll+M+2M —-3M) =0,
Psum: S, = fl(1+M — 3M +2M) =0,
Decreasing: S, = fI(—3M +2M + M +1) = 1.

4.3 COMPENSATED SUMMATION 83

Thus the decreasing ordering sustains no rounding errors and produces the exact
answer, while both the increasing and Psum orderings yield computed sums with
relative error 1. The reason why the decreasing ordering performs so well in this
example is that it adds the “1” after the inevitable heavy cancellation has taken
place, rather than before, and so retains the important information in this term.
If we evaluate the term p = Y., |Si| in the error bound (4.3) for example (4.5)
we find

Increasing: u = 4M, Psum: p=3M, Decreasing: p =M + 1,

0 (4.3) “predicts” that the decreasing ordering will produce the most accurate
answer, but the bound it provides is extremely pessimistic since there are no
rounding errors in this instance.

Extrapolating from this example, we conclude that the decreasing ordering is
likely to yield greater accuracy than the increasing or Psum orderings whenever
there is heavy cancellation in the sum, that is, whenever | 37", z;| < 320 |z;].

Turning to the insertion method, a good explanation of the insertion strategy is
that it attempts to minimize, one at a time, the terms |T1| |Tn 1| in the error
bound (4.3). Indeed, if the z; are all nonnegative the insertlon method minimizes
this bound over all instances of Algorithm 4.1.

Finally, we note that a stronger form of the bound (4.4) holds for pairwise
summation. It can be deduced from (4.3) or derived directly, as follows. Assume
for simplicity that n = 2”. Unlike in recursive summation each addend takes part
in the same number of additions, log, n. Therefore we have a relation of the form

n logy n)
=Y H +6), 159 <,
=1 k=1

which leads to the bound

n
| Enl < Tiogyn O 1il- (4.6)
i=1

Since it is proportional to log, n rather than n, this is a smaller bound than (4.4),
which is the best bound of this form that holds in general for Algorithm 4.1.

4.3. Compensated Summation

We have left to last the compensated summation method, which is recursive sum-
mation with a correction term cleverly designed to diminish the rounding errors.
Compensated summation is worth considering whenever an accurate sum is re-
quired and computations are already taking place at the highest precision sup-
ported by the hardware or the programming language in use.

In 1951 Gill [488, 1951] noticed that the rounding error in the sum of two
numbers could be estimated by subtracting one of the numbers from the sum,
and he made use of this estimate in a Runge-Kutta code in a program library
for the EDSAC computer. Gill’s estimate is valid for fixed point arithmetic only.
Kahan [686, 1965] and Mgller [870, 1965] both extended the idea to floating point
arithmetic. Mgller shows how to estimate a + b — fl(a + b) in chopped arithmetic,

84 SUMMATION

a | as [e |
+b [b b2 }
=3] ax l az + by I
—a | 0 |
—-b I — b I 0 =: —e

Figure 4.1. Recovering the rounding error.

while Kahan uses a slightly simpler estimate to derive the compensated summation
method for computing) ;. ; ;.

The estimate used by Kahan is perhaps best explained with the aid of a dia-
gram. Let a and b be floating point numbers with |a| > |b], let §= fl(a + b), and
consider Figure 4.1, which uses boxes to represent the significands of @ and b. The
figure suggests that if we evaluate

e=—[((a+b)—a)—b] =(a—35)+b

in floating point arithmetic, in the order indicated by the parentheses, then the
computed € will be a good estimate of the error (a + b) — 5. In fact, for rounded
floating point arithmetic in base 2, we have

a+b=5+%, (4.7)

that is, the computed € represents the error exactly. This result (which does not
hold for all bases) is proved by Dekker [302, 1971, Thm. 4.7], Knuth (744, 1998,
Thm. C, §4.2.2], and Linnainmaa [788, 1974, Thm. 3]. Note that there is no point
in computing fI(5+ €), since 5 is already the best floating point representation of
a+ b! Note also that this result implies, in particular, that the error (a +b) — §
is a floating point number; for a short proof of this fact see Problem 4.6.

Kahan’s compensated summation method employs the correction e on every
step of a recursive summation. After each partial sum is formed, the correction is
computed and immediately added to the next term z; before that term is added
to the partial sum. Thus the idea is to capture the rounding errors and feed them
back into the summation. The method may be written as follows.

Algorithm 4.2 (compensated summation). Given floating point numbers

T1,...,Tn this algorithm forms the sum s = Z?zlzi by compensated summa-
tion.
s=0;e=0
fori=1:n
temp = s
y=z;te
s=temp+y

e = (temp —s) +y % Evaluate in the order shown.
end

4.3 COMPENSATED SUMMATION 85

The compensated summation method has two weaknesses: € is not necessarily
the exact correction, since (4.7) is based on the assumption that |a| > |b|, and
the addition y = z; + e is not performed exactly. Nevertheless, the use of the
corrections brings a benefit in the form of an improved error bound. Knuth (744,
1998, Ex. 19, §4.2.2] shows that the computed sum §n satisfies

Su=>"(1+m)zi, |mil < 2u+0(nu?), (4.8)
=1

which is an almost ideal backward error result (a more detailed version of Knuth’s
proof is given by Goldberg [496, 1991]).

In [688, 1972] and [689, 1973] Kahan describes a variation of compensated
summation in which the final sum is also corrected (thus “s = s + €” is appended
to the algorithm above). Kahan states in [688, 1972] and proves in [689, 1973]
that (4.8) holds with the stronger bound |p] <2u+O((n—i+1)u?). The
proofs of (4.8) given by Knuth and Kahan are similar; they use the model (2.4)
with a subtle induction and some intricate algebraic manipulation.

The forward error bound corresponding to (4.8) is

|En] < (2u+0(nu?)) Y Jail. (4.9)
i=1

As long as nu < 1, the constant in this bound is independent of n, and so the
bound is a significant improvement over the bounds (4.4) for recursive summation
and (4.6) for pairwise summation. Note, however, that if Y., |z:| > | Y i, zil,
compensated summation is not guaranteed to yield a small relative error.

Another version of compensated summation has been investigated by several
authors: Jankowski, Smoktunowicz, and Wozniakowski [670, 1983], Jankowski
and Wozniakowski [672, 1985], Kielbasinski [731, 1973], Neumaier [883, 1974], and
Nickel [892, 1970]. Here, instead of immediately feeding each correction back into
the summation, the corrections are accumulated separately by recursive summa-
tion and then the global correction is added to the computed sum. For this version
of compensated summation Kietbasiriski [731, 1973] and Neumaier [883, 1974) show
that

n
S, = Z(l + i) T4, lui] < 2u +n?u?, (4.10)

i=1
provided nu < 0.1; this is weaker than (4.8) in that the second-order term has an
extra factor n. If n?u < 0.1 then in (4.10), |g;| < 2.1u. Jankowski, Smoktunowicz,
and Wozniakowski [670, 1983] show that, by using a divide and conquer imple-
mentation of compensated summation, the range of n for which |p;| < cu holds in
(4.10) can be extended, at the cost of a slight increase in the size of the constant c.
Neither the correction formula (4.7) nor the result (4.8) for compensated sum-
mation holds under the no-guard-digit model of floating point arithmetic. Indeed,
Kahan [696, 1990] constructs an example where compensated summation fails to
achieve (4.9) on certain Cray machines, but he states that such failure is extremely
rare. In [688, 1972] and [689, 1973] Kahan gives a modification of the compensated
summation algorithm in which the assignment “e = (temp—s) +y” is replaced by

86 SUMMATION

f=0
if sign(temp) = sign(y), f = (0.46 * s — s) + s, end
e=((temp—f)—(s—f)) +y

Kahan shows in {689, 1973] that the modified algorithm achieves (4.8) “on all North
American machines with floating hardware” and explains that “The mysterious
constant 0.46, which could perhaps be any number between 0.25 and 0.50, and the
fact that the proof requires a consideration of known machines designs, indicate
that this algorithm is not an advance in computer science.”

Viten’ko [1199, 1968] shows that under the no-guard-digit model (2.6) the
summation method with the optimal error bound (in a certain sense defined in
[1199, 1968]) is pairwise summation. This does not contradict Kahan’s result
because Kahan uses properties of the floating point arithmetic beyond those in
the no-guard-digit model.

A good illustration of the benefits of compensated summation is provided by
Euler’s method for the ordinary differential equation initial value problem gy’ =
f(z,y), y(a) given, which generates an approximate solution according to yx+1 =
Yk + hfk, Yo = y(a). We solved the equation y' = —y with y(0) = 1 over [0,1]
using n steps of Euler’s method (nh = 1), with n ranging from 10 to 108. With
compensated summation we replace the statements z =z + h, y =y + h * f(z,y)
by (with the initialization cz = 0, cy = 0)

dz=h+cz

new.r =z +dzc

cz = (z — new.x) + dz
T = newx

dy =h=* f(z,y) +cy

new.y =y + dy
cy = (y — new.y) + dy
Y = new.y

Figure 4.2 shows the errors e, = |y(1) — J»|, where ¥, is the computed approx-
imation to y(1). The computations were done in Fortran 90 in single precision
arithmetic on a Sun SPARCstation (v =~ 6 x 10~8). Since Euler’s method has
global error of order h, the error curve on the plot should be approximately a
straight line. For the standard implementation of Euler’s method the errors e,
start to increase steadily beyond n = 20000 because of the influence of round-
ing errors. With compensated summation the errors e, are much less affected by
rounding errors and do not grow in the range of n shown (for n = 108, e, is about
10 times larger than it would be in exact arithmetic). Plots of U-shaped curves
showing total error against stepsize are common in numerical analysis textbooks
(see, e.g., Forsythe, Malcolm, and Moler [430, 1977, p. 119] and Shampine [1030,
1994, p- 259]), but the textbooks rarely point out that the “U” can be flattened
out by compensated summation.

The cost of applying compensated summation in an ordinary differential equa-
tion solver is almost negligible if the function f is at all expensive to evaluate.
But, of course, the benefits it brings are noticeable only when a vast number of

4.3 COMPENSATED SUMMATION 87

error

Figure 4.2. Errors |y(1) — §a| for Euler’s method with (“x”) and without (“0”) compen-
sated summation.

integration steps are taken. Very-long-term integrations are undertaken in celes-
tial mechanics, where roundoff can affect the ability to track planetary orbits.
Researchers in astronomy use compensated summation, and other techniques, to
combat roundoff. An example application is a 3 million year integration of the
planets in the solar system by Quinn, Tremaine, and Duncan [965, 1991]; it used
a linear multistep method of order 13 with a constant stepsize of 0.75 days and
took 65 days of machine time on a Silicon Graphics 4D-25 workstation. See also
Quinn and Tremaine [964, 1990] and Quinlan [962, 1994].

Finally, we describe an even more ingenious algorithm called doubly compen-
sated summation, derived by Priest 955, 1992] from a related algorithm of Kahan.
It is compensated summation with two extra applications of the correction process®
and it requires 10 instead of 4 additions per step. The algorithm is tantamount to
simulating double precision arithmetic with single precision arithmetic; it requires
that the summands first be sorted into decreasing order, which removes the need
for certain logical tests that would otherwise be necessary.

Algorithm 4.3 (doubly compensated summation). Given floating point numbers
T,...,T, this algorithm forms the sum s, = Y ., z; by doubly compensated
summation. All expressions should be evaluated in the order specified by the
parentheses.

Sort the z; so that |z1| > |z2| > -+ > |2n|-
s =z15¢ =0
fork=2:n

8The algorithm should perhaps be called triply compensated summation, but we adopt Priest’s
terminology.

88 SUMMATION

Yk = Ck—1 + Tk

ug = Tk — (Yyx — Ck—1)

tr = Yk + Sk—1

Uk = Yk — (tk — Sk—1)

2k = Uk + Vk

Sk =tk + 2k

ck = 2k — (sk — tx)
end

Priest {955, 1992, §4.1] analyses this algorithm for t-digit base 3 arithmetic
that satisfies certain reasonable assumptions—ones which are all satisfied by IEEE
arithmetic. He shows that if n < 3273 then the computed sum 3, satisfies

[— 8] < 2ulsy],

that is, the computed sum is accurate virtually to full precision.

4.4. Other Summation Methods

We mention briefly two further classes of summation algorithms. The first builds
the sum in a series of accumulators, which are themselves added to give the sum.
As originally described by Wolfe [1252, 1964] each accumulator holds a partial sum
lying in a different interval. Each term z; is added to the lowest-level accumulator;
if that accumulator overflows it is added to the next-highest one and then reset
to zero, and this cascade continues until no overflow occurs. Modifications of
Wolfe’s algorithm are presented by Malcolm [808, 1971] and Ross [993, 1965].
Malcolm [808, 1971] gives a detailed error analysis t o show that his method achieves
a relative error of order u. A drawback of the algorithm is that it is strongly
machine dependent. An interesting and crucial feature of Malcolm’s algorithm
is that on the final step the accumulators are summed by recursive summation
in order of decreasing absolute value, which in this particular situation precludes
severe loss of significant digits and guarantees a small relative error.

Another class of algorithms, referred to as “distillation algorithms” by Ka-
han [695, 1987], work as follows: given z; = fl(z;), i = 1l:n, they iteratively
construct floating point numbers :cgk), ... ,x%k) such that 377, a:z(-k) = >,z
terminating when x&k) approximates Z?zl x; with relative error at most u. Ka-
han states that these algorithms appear to have average run times of order at
least nlogn. Anderson [23, 1999] gives a very readable description of a distillation
algorithm and offers comments on earlier algorithms, including those of Bohlender
(145, 1977], Leuprecht and Oberaigner (782, 1982], and Pichat [940, 1972]. See
also Kahan [695, 1987] and Priest [955, 1992, pp. 66-69] for further details and
references.

4.5. Statistical Estimates of Accuracy

The rounding error bounds presented above can be very pessimistic, because they
account for the worst-case propagation of errors. An alternative way to compare

4.6 CHOICE OF METHOD 89

Table 4.1. Mean square errors for nonnegative ;-

Distrib. | Increasing Random Decreasing Insertion Pairwise

Unif(0, 2p) | 0.20p%n%c? 0.33u°n%6? 0.53p’n%0? 2.6u%n? 2.7u%n?
Exp(u) 013u2 3 2 033u2 3 2 063’1‘2 3 2 26[12 2 2 40/-1'2 2 2

summation methods is through statistical estimates of the error, which may be
more representative of the average case. A statistical analysis of three summation
methods has been given by Robertazzi and Schwartz [987, 1988] for the case of
nonnegative x;. They assume that the relative errors in floating point addition are
statistically independent and have zero mean and finite variance o2. Two distri-
butions of nonnegative x; are considered: the uniform distribution on [0, 2], and
the exponential distribution with mean p. Making various simplifying assumptions
Robertazzi and Schwartz estimate the mean square error (that is, the variance of
the absolute error) of the computed sums from recursive summation with random,
increasing, and decreasing orderings, and from insertion summation and pairwise
summation (with the increasing ordering). Their results for the summation of n
numbers are given in Table 4.1.

The results show that for recursive summation the ordering affects only the
constant in the mean square error, with the increasing ordering having the smallest
constant and the decreasing ordering the largest; since the x; are nonnegative, this
is precisely the ranking given by the rounding error bound (4.3). The insertion and
pairwise summation methods have mean square errors proportional to n? rather
than n3 for recursive summation, and the insertion method has a smaller constant
than pairwise summation. This is also consistent with the rounding error analysis,
in which for nonnegative z; the insertion method satisfies an error bound no larger
than pairwise summation and the latter method has an error bound with a smaller
constant than for recursive summation (log, n versus n).

4.6. Choice of Method

There is a wide variety of summation methods to choose from. For each method
the error can vary greatly with the data, within the freedom afforded by the error
bounds; numerical experiments show that, given any two of the methods, data
can be found for which either method is more accurate than the other [600, 1993)].
However, some specific advice on the choice of method can be given.

1. If high accuracy is important, consider implementing recursive summation
in higher precision; if feasible this may be less expensive (and more accurate)
than using one of the alternative methods at the working precision. What
can be said about the accuracy of the sum computed at higher precision?
If S, = Z?zl x; is computed by recursive summation at double precision
(unit roundoff ©2?) and then rounded to single precision, an error bound of
the form |S, — Sn| < ulSa| + nu? > i, |zi| holds. Hence a relative error
of order u is guaranteed if nud ., |z;| < |S,|. Priest [955, 1992, pp. 62—

90 SUMMATION

63] shows that if the z; are sorted in decreasing order of magnitude before
being summed in double precision, then |S, — §n| < 2u|S,| holds provided
only that n < #%~3 for t-digit base 3 arithmetic satisfying certain reasonable
assumptions. Therefore the decreasing ordering may be worth arranging if
there is a lot of cancellation in the sum. An alternative to extra precision
computation is doubly compensated summation, which is the only other
method described here that guarantees a small relative error in the computed
sum.

2. For most of the methods the errors are, in the worst case, proportional to n. If
n is very large, pairwise summation (error constant log, n) and compensated
summation (error constant of order 1) are attractive.

3. If the z; all have the same sign then all the methods yield a relative error
of at most nu and compensated summation guarantees perfect relative ac-
curacy (as long as nu < 1). For recursive summation of one-signed data,
the increasing ordering has the smallest error bound (4.3) and the insertion
method minimizes this error bound over all instances of Algorithm 4.1.

4. For sums with heavy cancellation (37, |zi| > | Y1, zil), recursive sum-
mation with the decreasing ordering is attractive, although it cannot be
guaranteed to achieve the best accuracy.

Considerations of computational cost and the way in which the data are gen-
erated may rule out some of the methods. Recursive summation in the natural
order, pairwise summation, and compensated summation can be implemented in
O(n) operations for general z;, but the other methods are more expensive since
they require searching or sorting. Furthermore, in an application such as the nu-
merical solution of ordinary differential equations, where z; is not known until
Zf;ll z; has been formed, sorting and searching may be impossible.

4.7. Notes and References

This chapter is based on Higham [600, 1993]. Analysis of Algorithm 4.1 can also
be found in Espelid [394, 1995].

The earliest error analysis of summation is that of Wilkinson for recursive
summation in [1228, 1960], [1232, 1963].

Pairwise summation was first discussed by McCracken and Dorn (833, 1964,
pp. 61-63], Babuska [43, 1969], and Linz 792, 1970]. Caprani [203, 1971] shows
how to implement the method on a serial machine using temporary storage of size
[logon] + 1 (without overwriting the z;).

The use of compensated summation with a Runge-Kutta formula is described
by Vitasek [1198, 1969]. See also Butcher [189, 1987, pp. 118-120] and the experi-
ments of Linnainmaa [788, 1974]. Davis and Rabinowitz [295, 1984, §4.2.1] discuss
pairwise summation and compensated summation in the context of quadrature.

Demmel [319, 2001] analyses how much extra precision is needed in recursive
summation with the (approximately) decreasing ordering in order to guarantee a
computed result correct to working precision.

PROBLEMS 91

Problems

4.1. Define and evaluate a condition number C(z) for the summation S,(z) =
S 1 z;- When does the condition number take the value 17

4.2. (Wilkinson [1232, 1963, p. 19]) Show that the bounds (4.3) and (4.4) are
nearly attainable for recursive summation. (Hint: assume u = 27%, set n = 27
(r < t), and define

z(l) =1,
z(2)=1-271,
z(3:4) =1 -2"%,
z(5:8) =1 — 271,

(2N + 127 =1-277170)

4.3. Let S;, = Z:;l T; be computed by recursive summation in the natural order.
Show that

ku

Sn = (214 22)(1 + 6n1) + zaxi(l + On—it1), 16k < v = T %0’

1=

and hence that F,, = §n — S, satisfies

n
|En| < (Jz1| + |22) ¥n-1 + Z | 2| V—it1-
i=3

Which ordering of the z; minimizes this bound?

4.4. Let M be a floating point number so large that fI(10+ M) = M. What are
the possible values of fl(Z?zl:zi), where {z;}$_, = {1,2,3,4,M,—M} and the
sum is evaluated by recursive summation?

4.5. The “+” method for computing S, = "7, z; is defined as follows: form the
sum of the positive numbers, S, and the sum of the nonpositive numbers, S_,
separately, by any method, and then form S, = S_ + S,. Discuss the pros and
cons of this method.

4.6. (Shewchuk [1038, 1997]) Consider correctly rounded binary arithmetic. Show
that if @ and b are floating point numbers then err(a, b) = a+b— fl(a+b) satisfies
lerr(a,b)| < min(|al, |b|). Hence show that, barring overflow in fl(a + b), err(a, b)
is a floating point number.

4.7. Let {z;} be a convergent sequence with limit £. Aitken’s A2-method (Aitken

extrapolation) generates a transformed sequence {y;} defined by

2
(Tis1 — z4)
Tive = 2Tiy1 + T

Yi = Ty —

92 SUMMATION

Under suitable conditions (typically that {z;} is linearly convergent), the y; con-
verge to £ faster than the x;. Which of the following expressions should be used
to evaluate the denominator in the formula for y;?

(a) (Tigo — 2zi41) + x4

(b) (Tiv2 — ziy1) — (Tig1 — T0).

(€) (Ti+z +2i) — 2Tiy1.

4.8. Analyse the accuracy of the following method for evaluating S, = Y i, s

n
S, = log H et.
=1

4.9. In numerical methods for quadrature and for solving ordinary differential
equation initial value problems it is often necessary to evaluate a function on an
equally spaced grid of points on a range [a,b]: z; == a + th, ¢ = 0:n, where
h = (b — a)/n. Compare the accuracy of the following ways to form z;. Assume
that a and b, but not necessarily h, are floating point numbers.

(@) xzi=zis1+h (zog=a).

(b) z; = a+ih.

(€) zi = a(1 —i/n) + (i/n)b.

Note that (a) is typically used without comment in, for example, a Newton—

Cotes quadrature rule or a Runge-Kutta method with fixed stepsize.

4.10. (RESEARCH PROBLEM) Priest [955, 1992, pp. 61-62] has proved that if |z;| >
|z2| > |z3| then compensated summation computes the sum z; + z2 + z3 with a
relative error of order u (under reasonable assumptions on the arithmetic, such as
the presence of a guard digit). He also gives the example

;=2 g, =2" 2 py=azy=z5=x5=—(2"-1),

for which the exact sum is 2 but compensated summation computes 0 in IEEE
single precision arithmetic (t = 24). What is the smallest n for which compensated
summation applied to z1, . .., T, ordered by decreasing absolute value can produce
a computed sum with large relative error?

Chapter 5
Polynomials

The polynomial (z — 1)(z — 2)...(z — 20) is not a ‘difficult’ polynomial per se ...
The ‘difficulty’ with the polynomial [[(z — i) is that of

evaluating the explicit polynomial accurately.

If one already knows the roots, then the polynomial can be evaluated

without any loss of accuracy.

— J. H. WILKINSON, The Perfidious Polynomial (1984)

| first used backward error analysis in connection with
simple programs for computing zeros of polynomials
soon after the PILOT ACE came into use.

— J. H. WILKINSON, The State of the Art in Error Analysis (1985)

The Fundamental Theorem of Algebra asserts that

every polynomial equation over the complex field has a root.
It is almost beneath the dignity of such a majestic theorem
to mention that in fact it has precisely n roots.

— J. H. WILKINSON, The Perfidious Polynomial (1984)

/it can happen ... that a particular polynomial

can be evaluated accurately by nested multiplication,

whereas evaluating the same polynomial by an economical method
may produce relatively inaccurate results.

— C. T. FIKE, Computer Evaluation of Mathematical Functions (1968)

93

94 POLYNOMIALS

Two common tasks associated with polynomials are evaluation and interpolation:
given the polynomial find its values at certain arguments, and given the values at
certain arguments find the polynomial. We consider Horner’s rule for evaluation
and the Newton divided difference polynomial for interpolation. A third task not
considered here is finding the zeros of a polynomial. Much research was devoted
to polynomial zero finding up until the late 1960s; indeed, Wilkinson devotes a
quarter of Rounding Errors in Algebraic Processes [1232, 1963] to the topic. Since
the development of the QR algorithm for finding matrix eigenvalues there has been
less demand for polynomial zero finding, since the problem either arises as, or can
be converted to (see §28.6 and [383, 1995], [1144, 1994]), the matrix eigenvalue
problem.

5.1. Horner’s Method

The standard method for evaluating a polynomial
p(z) =as+ a1z + - +anz" (5.1)

is Horner’s method (also known as Horner’s rule and nested multiplication), which
consists of the following recurrence:

Qn(z) = Qn
fort=n—1:-1:0

2i(T) = g1 (T) + a;
end

p(z) = 9o(z)

The cost is 2n flops, which is n less than the more obvious method of evaluation
that explicitly forms powers of = (see Problem 5.2).

To analyse the rounding errors in Horner’s method it is convenient to use the
relative error counter notation <k> (see (3.10)). We have

n-1 = (2Gu<1> + an_1)<1>
=1a0,<2>+ ap,_1<1>,

Gn—2 = (Tq-1<1> + ap_2)<1>
= 220, <4> + 2ap_1<3> + ap_o<1>.

It is easy to either guess or prove by induction that

Qo = ao<l>+a12<3>+ -+ ap_12"71<2n — 1> + 4, 2" <2n>
=(1+61)ao+ (1+63)az+---+(1+ 02n_1)an_1x"_1
+ (1 + 62n)asz™, (5.2)

where we have used Lemma 3.1, and where |6| < ku/(1 — ku) =: v,. This result
shows that Horner’s method has a small backward error: the computed gy is the
exact value at x of a polynomial obtained by making relative perturbations of size
at most v,,, to the coefficients of p(z).

5.1 HORNER’S METHOD 95

A forward error bound is easily obtained: from (5.2) we have

n

p(2) = Gol < Yan Y _ laillz]* = 730 (]2]), (5.3)
1=0

where p(z) = >_i-_|ai|z*. The relative error is bounded according to

lp(z) — o] pll=zl) _
|p($)| < Yon |p(z)| - Wan(Ihw)‘

Clearly, the factor 9(p,z) can be arbitrarily large. However, %(p,z) =1 if a; > 0
for all ¢ and > 0, or if (—1)%a; > 0 for all i and = < 0.

In a practical computation we may wish to compute an error bound along with
@o- The bound (5.3) is entirely adequate for theoretical purposes and can itself be
computed by Horner’s method. However, it lacks sharpness for two reasons. First,
the bound is the result of replacing each «y, by 7,,. Second, and more importantly,
it is an a priori bound and so takes no account of the actual rounding errors that
occur. We can derive a sharper, a posteriori bound by a running error analysis.

For the ith step of Horner’s method we can write

(1+e)@ =2qr1(1+6:) +a;, 6]]al <, (5.4)
where we have used both (2.4) and (2.5). Defining g; =: ¢; + f;, we have

¢ + fi + €@ = ©(qit1 + fir1) + Tir10: + as,
or

fi =zfis1 + QG416 — €@, fo=0.
Hence
|£il < |2l firsl + ullzl |G| + (@)
Since f, = 0, we have | f;| < um;, where
= |$|Wi+1+|$||@+1|+|@|a T = 0.

We can slightly reduce the cost of evaluating the majorizing sequence 7; by working
with p; := 1(m; +gl), which satisfies the recurrence

~ 1.
pi = lelpi + @G, = Sl
We can now furnish Horner’s method with a running error bound.

Algorithm 5.1. This algorithm evaluates y = fl(p(z)) by Horner’s method,
where p(z) = 3" a;z*. It also evaluates a quantity p such that |y — p(z)| < p.

Yy=an

r=lyl/2

fori=n-1:-1:0
y=zy+a;
p=lzlp+ |yl

end

p=up—lyl)

Cost: 4n flops.

96 PoLYNOMIALS

It is worth commenting on the case where one or more of the a; and z is
complex. The analysis leading to Algorithm 5.1 is still valid for complex data, but
weneed to remember that the error bounds for fi(zopy) are not the same as for real
arithmetic. In view of Lemma 3.5, it suffices to replace the last line of the algorithm
by 1 = v27,(21 — |y|). An increase in speed of the algorithm, with only a slight
worsening of the bound, can be obtained by replacing |y| = ((Re ¥)? + (Im y)2) 1/2
by |Rey|+ |Im ¥y (and, of course, |z| should be evaluated once and for all before
entering the loop).

One use of Algorithm 5.1 is to provide a stopping criterion for a polynomial
zero-finder: if |fl(p(z))| is of the same order as the error bound g, then further
iteration serves no purpose, for as far as we can tell, could be an exact zero.

As a numerical example, for the expanded form of p(z) = (z + 1)3% we found
in MATLAB that

fllp(-1))=0, p=24x10"7, ~,,5(z|) =1.5x 1075,
and for p(z) the Chebyshev polynomial of degree 32,
fl(p(0.5)) =~ 0.5000, :=3.3x107'% 4, B(|z|) =1.0 x 1078,

In these two cases, the running error bound is, respectively, 62 and 31 times smaller
than the a priori one.

In another experiment we evaluated the expanded form of p(z) = (z — 2)3
in simulated single precision in MATLAB (u =~ 6 x 10~8) for 200 equally spaced
points near x = 2. The polynomial values, the error, and the a priori and running
error bounds are all plotted in Figure 5.1. The running error bound is about seven
times smaller than the a priori one.

5.2. Evaluating Derivatives

Suppose now that we wish to evaluate derivatives of p. We could simply dif-
ferentiate (5.1) as many times as necessary and apply Horner’s method to each
expression, but there is a more efficient way. Observe that if we define

q@) =g+ q@z+ - +g.x"7 Y, T =qo,

where the g; = ¢;(a) are generated by Horner’s method for p(a), then
p(z) = (z —a)q(z) +

In other words, Horner’s method carries out the process of synthetic division.
Clearly, p’(@) = g(a). It is worth noting in passing that for z # «,

o(z) = p(z) — p(a)

r—«

I

that is, ¢ is a divided difference. If we repeat synthetic division recursively on
q(z), we will be evaluating the coefficients in the Taylor expansion

(x_;!a_)zp"(a) +ee (‘E__O‘_)np(n) (@),

p(z) =pla) + (z — a)p'(e) + y

5.2 EVALUATING DERIVATIVES 97

=+ A priori bound
- - Running bound
— Error

L
1.99 1.995 2 2.005 2.01

Figure 5.1. Computed polynomial values (top) and running and a priori bounds (bottom)
for Horner’s method.

and after a final scaling by factorials, we will obtain the derivatives of p at c. The
resulting algorithm is quite short.

Algorithm 5.2. This algorithm evaluates the polynomial p(z) = 37~ a;z" and
its first k derivatives at a, returning y; = p®(a), i = 0: k.

Yo = an

y(l:k) =0

forj=n-—1:-1:0
for ¢ = min(k,n —j): —-1:1

Yi = alyi + Yi-1

end
Yo = a¥Yo + a;

end

m=1

forj=2k
m=m=x%j

end

Cost: nk + 2(k +n) — k?/2 flops.

How is the error bounded for the derivatives in Algorithm 5.27 To answer
this question with the minimum of algebra, we express the algorithm in matrix
notation. Horner’s method for evaluating p(a) is equivalent to solution of the

98 PoLYNOMIALS

bidiagonal system

1 -« 1 40 ag
1 - q1 ay
Up+1q9:= 1 . =] | =a
. o . -
I | Lgnl .an |

By considering (5.4), we see that
(Ups1 + 41)7 = a, |A1] < u|Unqa].

Hence
lg — gl < u|l, +1“Un+IHQI+O(?). (5.5)

The recurrence for rg = p’() can be expressed as U,r = ¢(l:n), where r =
r(0:n —1), so
(Un + A2)7 = q(1:n), [Ag] < u|Uy.

Hence

= (U -U AU, (q n) + (g(1:n) — q(l:n))) + O(u?)
=7 —U;'Ayr + U (@(1:n) —g(1:n)) + O(u?).

This gives, using (5.5),

Ir — 7 < ulUy NUnllr] + U3 MU Unllg(1:0)] + Ou®). (5.6)
Now
1 ol e ... |afmH
1 o :
it = 1 . :)
|oe]
X | .
1 2o 2l ... 2a|r7YC
1 2|af :
lUgannl: 1 s
2le]
X 1
1 3lal S5laj? ... (@n—1)a*t"
1 3o :
U HIUZ U] = 1 :
3|a
1

5.3 THE NEWTON FORM AND POLYNOMIAL INTERPOLATION 99

By looking at the form of r and ¢, we find from (5.6) that

QUZ k%|ak|laf ! + O(u?)
k=1

2nu Y klakllaf*~! + O(u?)
k=1
=: 2nup’(a) + O(u?). (5.7)

IN

|p' () = 7o

IA

This is essentially the same form of bound as for p(c) in (5.3). Analogous bounds
hold for all derivatives.

5.3. The Newton Form and Polynomial Interpolation

An alternative to the monomial representation of a polynomial is the Newton form

n

i—1
p(@) = e [J (= - a), (5.8)

i=0 =0

which is commonly used for polynomial interpolation. The interpolation problem
is to choose p so that p(a;) = f;, i = 0: n, and the numbers c; are known as divided
differences. Assuming that the points o; are distinct, the divided differences may
be computed from a standard recurrence:

c®(0:n) = f(0:n)
fork=0n-1
forj=n:—-1:k+1

(k+1) k) k
¢ = (C§ - C§_)1)/(aj —Qj k1)

end

end
c= C(n)

Cost: 3n?/2 flops.

Two questions are of interest: how accurate are the computed ¢, and what is
the effect of rounding errors on the polynomial values obtained by evaluating the
Newton form? To answer the first question we express the recurrence in matrix—
vector form:

0 =¥, *tD) = Lie® k=0:n-1,

where Ly = D;le is lower bidiagonal, with

Dy = diag(ones(1:k + 1), ak+1 — Qo, @kt2 — Q1,5 .-+, On — Qn_k—1),
I .

My =

100 PoLyNOMIALS

It is straightforward to show that

glkt) = GkLkgk), (5.9)
where G = diag(ones(1:k +1),7y 1 2,-- -7k nt1), Where each ,; is of the form
M = (1 +81)(1 + 62)(1 + d3), |6:] < u. Hence

€= (Ln-1+ALn-1)...(Lo+ ALo)f, |ALi| < vs|Lil- (5.10)

From Lemma 3.8,
|C_a =](Ln—l .. -LO - (Ln—l + ALn—l) e (LO + ALO))fI
< ((1 + "/3)n - l)an—ll cee ILO“f[
= ((1=3w)™ = 1)|Ln-a| - |Lollf]- (5.11)

To interpret the bound, note first that merely rounding the data (f; — f;(1 +
8:), |6i] < u) can cause an error Ac as large as erouna = u|L||f|, where L =
L,_;... Ly, so errors of at least this size are inevitable. Since |Ln_1]|...|Lo| >
|Lyn—1...Lo| = |L|, the error in the computed divided differences can be larger than
€round Only if there is much subtractive cancellation in the product L = L,,_; ... Lo.
If g < a1 < --- < a, then each L; is positive on the diagonal and nonpositive on
the first subdiagonal; therefore |Lp—1|...|Lo| = |Ln-1...Lo| = |L|, and we have
the very satisfactory bound [c — ¢ < ((1 — 3u)™™ — 1)|L||f|. This same bound
holds if the a; are arranged in decreasing order.

To examine how well the computed Newton form reproduces the f; we “un-
wind” the analysis above. From (5.9) we have

&® = LG R = (L + ALYE*TY, ALk < yslL7Y.
By invoking Lemma 3.8 again, we obtain
|f = L7 < (1= 3w)™" = 1)|Lg"]... L7 14]lel- (5.12)

Ifa) <a; <--- < a, then Li—1 > 0 for all 7, and we obtain the very satisfactory
bound |f — L~'¢|] < ((1 —3u)™™ — 1)|L7}||c|]. Again, the same bound holds for
points arranged in decreasing order.

In practice it is found that even when the computed divided differences are
very inaccurate, the computed interpolating polynomial may still reproduce the
original data well. The bounds (5.11) and (5.12) provide insight into this observed
behaviour by showing that ¢ — € and f — L™!€ can be large only when there is
much cancellation in the products Ln_; ... Lof and Ly ! ...L,ﬂlc, respectively.

The analysis has shown that the ordering ap < o < --- < @, yields “optimal”
error bounds for the divided differences and the residual, and so may be a good
choice of ordering of interpolation points. However, if the aim is to minimize
|p(z) — fl(p(x))| for a given = # a;, then other orderings need to be considered.
An ordering with some theoretical support is the Leja ordering, which is defined
by the equations [975, 1990]

ap = max |a;), (5.13a)
2

Jj—1 j—1
o — ax| = max a;—ag|, j=ln-1 5.13b
[T e —eul = e [e — el (5.13b)

5.3 THE NEWTON FORM AND POLYNOMIAL INTERPOLATION 101

For a given set of n + 1 points a;, the Leja ordering can be computed in n? flops
(see Problem 5.4).

We give a numerical example to illustrate the analysis. Let n = 16 and let
ap < -+ < an be equally spaced points on [—1,1]. Working in simulated single
precision with u = 272* =~ 6 x 1078, we computed divided differences for two
different vectors f. Error statistics were computed by regarding the solutions
computed in double precision as exact. We define the ratios

(IZn1] - | ZollfDs (Zg*]- - LplaleD:

] S £l

(1) For f; from the normal N(0,1) distribution the divided differences range
in magnitude from 1 to 10%, and their relative errors range from 0 (the first di-
vided difference, fo, is always exact) to 3 x 10~7. The ratio p; = 16.3, so (5.11)
provides a reasonably sharp bound for the error in €. The relative errors when
f is reconstructed from the computed divided differences range between 0 and
3 x 107! (it makes little difference whether the reconstruction is done in single or
double precision). Again, this is predicted by the analysis, in this case by (5.12),
because p; = 2 x 107. For the Leja ordering, the divided differences are computed
with about the same accuracy, but f is reconstructed much more accurately, with
maximum relative error 7 x 107% (p, = 1 x 103, po = 8 x 10%).

(2) For f; = exp(a;), the situation is reversed: we obtain inaccurate divided
differences but an accurate reconstruction of f. The divided differences range in
magnitude from 10~ to 10~1, and their relative errors are as large as 1, but the
relative errors in the reconstructed f are all less. than 10~7. Again, the error
bounds predict this behaviour: p; = 6 x 108, p, = 1.02. The Leja ordering
performs similarly.

The natural way to evaluate the polynomial (5.8) for a given z is by a gener-
alization of Horner’s method:

p1 = max
1

Qn(x) =Cn
fori=n-1:-1:0

2:(z) = (T — i)gir1(2) + ¢
end

p(z) = qo(2)
A straightforward analysis shows that (cf. (5.2))
go = co<1>+ (z — ag)c1<4> + (T — ag) (T — a1)ca<T> + -+

+ (:E — ao) .. (.’L’ — an_g)cn_l <3n—2>
+(z—ag)...(z—an-1)cn,<3n>.

Hence the computed gg is the exact value corresponding to a polynomial with
slightly perturbed divided differences. The corresponding forward error bound is

n i—1
Ip(z) = Gol < Yan D _ leil [[Iz — 1.

1=0 i=0

102 PoLyNOMIALS

5.4. Matrix Polynomials

The scalar polynomial (5.1) can be generalized to a matrix polynomial in three
ways: to a matrix polynomial with scalar coefficients and matrix argument,

Pi(z)=agl + a1 X + -+ an X", a; €C, XeCmm™
to a matrix polynomial with matrix coefficients and scalar argument,
Py(z) = Ao+ Az + - - + Anz™, A; eC™™ (G
and to a matrix polynomial with matrix coefficients and matrix argument,
Py(z)=Ag+ A1 X + -+ A, X7, A e C™ X e CMY™ (5.14)

(We could also consider an analogue of P; in which the coefficient matrices A;
appear to the right of the powers of X.) Each type of polynomial arises in ap-
plications: P; in the approximation of matrix functions such as the exponential
and logarithm [868, 1978], [509, 1996, Chap. 11], [615, 2001]; P> in the polynomial
eigenvalue problem [1139, 2001]; and Ps in quasi-birth-death processes in Markov
chains and in numerical solution of the polynomial eigenvalue problem [617, 2000].

Evaluation of P, (or, more commonly, P,y for some vector y) is straightforward.
To evaluate Py and P3 Horner’s method can be used, but for P, Horner’s method is
not necessarily of optimal efficiency, even for a single evaluation. In fact, a method
of Paterson and Stockmeyer can evaluate P; in a number of matrix multiplications
proportional to /n, at the cost of extra storage proportional to m?./n elements
(928, 1973), [509, 1996, §11.2.4]. The storage can be reduced to a small constant
multiple of n? by a modification of Van Loan, which slightly increases the cost
(1179, 1979).

Error analysis of Horner’s method and of the Paterson—-Stockmeyer method for
evaluating P and Pj is straightforward; see Problem 5.6.

5.5. Notes and References

Backward and forward error analysis for Horner’s rule was given by Wilkinson [1232,
1963, pp. 36-37, 49-50]; our results are simply Wilkinson’s presented in a differ-
ent notation. The analysis has been redone by many other authors, sometimes
without reference to Wilkinson’s results. Another early reference, which gives a
forward error bound only, is McCracken and Dorn (833, 1964, §3.5],

For more on running error analysis see §3.3.

Miiller [877, 1983] gives a first-order error analysis for the evaluation of the
divided difference form of a polynomial. Olver [905, 1986] derives a posteriori
error bounds for the Horner scheme with derivatives (Algorithm 5.2), phrasing
them in terms of his relative precision notation. Stewart [1063, 1971] analyses
synthetic division, using a matrix-oriented approach similar to that in §5.2.

The relative merits of the monomial and Chebyshev representations of a poly-
nomial are investigated, with respect to accuracy of evaluation, by Newbery [888,
1974] and Schonfelder and Razaz [1020, 1980]. Clenshaw [239, 1955] showed how
Horner’s method could be extended to evaluate a polynomial expressed in the

5.5 NOTES AND REFERENCES 103

Chebyshev form p(z) = 3=, a;Ti(z), where T; is the Chebyshev polynomial of
degree i. Error analysis of Clenshaw’s method, and variations of it, are given by
Gentleman [472, 1969), Newbery [887, 1973], and Oliver [901, 1977], [902, 1979].
Clenshaw’s scheme can be generalized to expansions in terms of arbitrary orthog-
onal polynomials; see Smith [1050, 1965] and Algorithm 22.8.

Running error bounds for Horner’s method were included in algorithms of
Kahan and Farkas [703, 1963, 704, 1963] without explanation. Adams [6, 1967]
derives the bounds and extends them to evaluation of a real polynomial at a
complex argument. Algorithm 5.1 is given in [6, 1967], and also in the classic paper
by Peters and Wilkinson [937, 1971], which describes many aspects of the solution
of polynomial equations. Wilkinson’s paper “The Perfidious Polynomial” [1247,
1984] (for which he was awarded the Chauvenet Prize) is highly recommended as
a beautifully written introduction to backward error analysis in general and error
analysis for polynomials in particular.

There seems to be little work on choosing the ordering of interpolation points
to minimize the effect of rounding errors on the construction or evaluation of the
interpolating polynomial. Werner [1216, 1984] examines experimentally the effect
of different orderings on the computed value of an interpolating polynomial at a
single point, for several forms of interpolating polynomial.

The Leja ordering, which was proposed by Leja in a 1957 paper, is analysed
in detail by Reichel [975, 1990]. He shows that an appropriately defined condition
number for the Newton form of interpolating polynomial grows at a slower than
exponential rate in the degree n for Leja points, which are points taken from a
given compact set that satisfy the condition (5.13). For more on the numerical
benefits of the Leja ordering see §22.3.3.

Egecioglu, Gallopoulos, and Kog [396, 1990] give a parallel algorithm, based on
the parallel prefix operation, for computing divided differences and evaluating the
interpolating polynomial and they give a rounding error analysis of the algorithm.

If a polynomial is to be evaluated many times at different arguments it may be
worthwhile to expend some effort transforming it to a form that can be evaluated
more cheaply than by a straightforward application of Horner’s rule. For example,
the quartic

p(z) = agx* + asz® + azx? + ayz + ag, ag £ 0,
can be rewritten as (744, 1998, Sec. 4.6.4]
p() = ((y + =+ a2)y + a3)ay, y = (v + ao)r + au,
where the coefficients «; are given by

o = 3(as/ag — 1), B=az/as—aglag+1), a1 =ai/as—af,

az=03-2a, as=ag/as—ai(oeg+az), a4=ay.

Once the a; have been computed, p(z) can be evaluated in three multiplications
and five additions, as compared with the four multiplications and four additions
required by Horner’s rule. If a multiplication takes longer than an addition, the
transformed polynomial should be cheaper to evaluate. For polynomials of degree

104 PoLYNOMIALS

n > 4 there exist evaluation schemes that require strictly less than the 2n total ad-
ditions and multiplications required by Horner’s rule; see Knuth [741, 1962], [744,
1998, Sec. 4.6.4] and Fike [412, 1967]. One application in which such schemes have
been used is in evaluating polynomial approximations in an elementary function
library (451, 1991]. Little seems to be known about the numerical stability of fast
polynomial evaluation schemes; see Problem 5.7.

Problems

5.1. Give an alternative derivation of Algorithm 5.2 by differentiating the Horner
recurrence and rescaling the iterates.

5.2. Give an error analysis for the following “beginner’s” algorithm for evaluating
p(z) =ag + a1z + -+ apz™

g(z)=ap;y=1

fori=1:n

y=xy

q(z) = q() + asy
end
p(z) = q(z)

5.3. Let p(z) = ag + a1z + - -- + a,z™ and n = 2m. Then

p(z) = (ag + asz? + - 4 apmz®™) + (arz + asz> + - + agm_122™1)
=ag+agy+ -+ aamy” + (a1 tagy + -+ azm_1y™),
where y = z2. Obtain an error bound for fi(p(z)) when p is evaluated using this
splitting (using Horner’s rule on each part).
5.4. Write down an algorithm for computing the Leja ordering (5.13) in n? flops.

5.5. If the polynomial p(z) = Y ;- ;aiz* has roots 1, ..., &y, it can be evaluated
from the root product form p(z) = a»[[;-,(z — z;). Give an error analysis for
this evaluation.

5.6. Show that the computed polynomial ﬁg from Horner’s method applied to Ps
in (5.14) satisfies

1Py = B3l < n(m + Dupa(| X 1) + O(?),

where p3(z) = 30~ || Ak ||z* and the norm is the 1-norm or the co-norm.

5.7. (RESEARCH PROBLEM) Investigate the numerical stability of fast polynomial
evaluation schemes (see the Notes and References) by both rounding error analysis
and numerical experiments. For a brief empirical study see Miller [851, 1975, §10].

Chapter 6
Norms

While it is true that all norms are equivalent theoretically,
only a homely one like the co-norm is truly useful numerically.

— J. H. WILKINSON?, Lecture at Stanford University (1984)

Matrix norms are defined in many different ways in the older literature,
but the favorite was the Euclidean norm of the matrix

considered as a vector in n%-space.

Wedderburn (1934) calls this the absolute value of the matrix

and traces the idea back to Peano in 1887.

— ALSTON S. HOUSEHOLDER,
The Theory of Matrices in Numerical Analysis (1964)

9Quoted in Fox [439, 1987].

105

106 NORMS

Norms are an indispensable tool in numerical linear algebra. Their ability to
compress the mn numbers in an m x n matrix into a single scalar measure of
size enables perturbation results and rounding error analyses to be expressed in a
concise and easily interpreted form. In problems that are badly scaled, or contain
a structure such as sparsity, it is often better to measure matrices and vectors
componentwise. But norms remain a valuable instrument for the error analyst,
and in this chapter we describe some of their most useful and interesting properties.

6.1. Vector Norms

A vector norm is a function | - || : C* — R satisfying the following conditions:
1. ||lz|| > 0 with equality iff z = 0.
2. |lez|| = |a| ||z|| for all & € C, z € C™.
3. |lz +yll < [lzll + llyll for all z,y € C™ (the triangle inequality).

The three most useful norms in error analysis and in numerical computation
are

n
lz]l, = Z |zi], “Manhattan” or “taxi cab” norm,
=1

n 1/2
llz]l2 = (Z |1'z'|2> = (2*z)"/?, Euclidean length,
i=1

[€llo = max |z.
1<i<n

These are all special cases of the Hélder p-norm:

n 1/p
lell, = (Z mlp) . peL
i=1

The 2-norm has two properties that make it particularly useful for theoretical
purposes. First, it is invariant under unitary transformations, for if @*Q = I,
then ||Qz|]2 = z*@*Qz = z*r = ||z||3. Second, the 2-norm is differentiable for all
x, with gradient vector V|z|2 = z/|x|2

A fundamental inequality for vectors is the Holder inequality (see, for example,
(547, 1967, App. 1))

oyl < lplyle 45 =1 (6.1)
TY =T Ylg» - - =1 .
pli¥llg P
This is an equality when p,g > 1 if the vectors (|T:|P) and (|y:|?) are linearly
dependent and z;y; lies on the same ray in the complex plane for all #; equality is
also possible when p = 1 and p = oo, as is easily verified. The special case with
p = q =2 is called the Cauchy-Schwarz inequality:

1z7y] < lel2llyll2-

6.2 MATRIX NORMS 107

For an arbitrary vector norm | - | the dual norm is defined by

|2z
lzllp = max EE (6.2)
It follows from the Hélder inequality that the dual of the p-norm is the g-norm,
where p~! + ¢! = 1. The definition of dual norm yields, trivially, the general
Holder inequality |z*y| < ||z|| |y|lp. For a proof of the reassuring result that the
dual of the dual norm is the original norm (the “duality theorem”) see Horn and
Johnson [636, 1985, Thm. 5.5.14].
In some analyses we need the vector z dual to y, which is defined by the
property
z'y = |lzllpllyll = 1. (6.3)
That such a vector z exists is a consequence of the duality theorem (see [636, 1985,
Cor. 5.5.15)).
How much two p-norms of a vector can differ is shown by the attainable in-
equalities (462, 1983, pp. 27-28], [498, 1983, Lem. 1.1]

1 1
(__._
lely, < llellp, <27~ 22 lzly,, by < (6.4)

The p-norms have the properties that ||z|| depends only on the absolute value
of z, and the norm is an increasing function of the absolute values of the entries
of z. These properties are important enough to warrant a definition.

Definition 6.1. A norm on C" is
1. monotone if |z| < |y| = |z| < ||ly|| for all z,y € C™, and
2. absolute if || |z| || = ||z|| for all z € C™.

The following nonobvious theorem shows that these two properties are equiv-
alent.

Theorem 6.2 (Bauer, Stoer, and Witzgall). A norm on C" is monotone if and
only if it is absolute.

Proof. See Horn and Johnson [636, 1985, Thm. 5.5.10], or Stewart and Sun [1083,
1990, Thm. 2.1.3]. 0

6.2. Matrix Norms

A matrix norm is a function | - || : C™*™ — R satisfying obvious analogues of the
three vector norm properties. The simplest example is the Frobenius norm

m n 1/2 1/
JAlr = (ZZ |az-j|2) = (trace(4°A))"

i=1 j=1

(which is sometimes called the Euclidean norm and denoted | - ||g).

108 NORMS

A very important class of matrix norms are those subordinate to vector norms.
Given a vector norm on C", the corresponding subordinate matrix norm on C™*"
is defined by
o 1Azl

1Al = X2l

(6.5)

or, equivalently,
4l = max |z,
llzll=1
(Strictly speaking, this definition uses two different norms: one on C™ in the
numerator of (6.5) and one on C™ in the denominator. Thus the norm used in the
definition is assumed to form a family defined on C® for any s.)
For the 1-, 2-, and oco-vector norms it can be shown that

- « ”
AL = féljaé(nz las;l, max column sum”,
1 Alloo = 1r<nf?$nz ||, “max row sum”,

|A|l2 = (p(A"A))l/2 = Omax(A), spectral norm,
where the spectral radius
p(B) = max{|A| : det(B — AI) =0},

and where omax(A) denotes the largest singular value of A. To remember the
formulae for the 1- and co-norms, note that 1 is a vertical symbol (for columns)
and oo is a horizontal symbol (for rows).

From the expression for the oo-norm it is immediate that

1Alleo = Il1Ale oo, e=11,1,..., 17,

where |A| = (|a;;]). This useful relation will be employed frequently in later
chapters.

A norm is consistent if it satisfies |AB|| < ||A|| | B|| whenever the product AB
is defined. The Frobenius norm and all subordinate norms are consistent. An
example of a norm that is not consistent is the “max norm” ||A|| = max; ; |a;;|.
The best bound that holds for all A € C™*™ and B € C"*? is ||AB|| < n||4]| ||B]l,
with equality when a;; =1 and b;; = 1.

A norm for which |[UAV|| = ||A| for all unitary U and V is called a unitarily
tnvariant norm. These norms have an interesting theory, which we will not explore
here (see [107, 1997, Chap. 4], [637, 1991, §3.5], or [1083, 1990, §2.3]). Only two
unitarily invariant norms will be needed for our analysis: the 2-norm and the
Frobenius norm. That these two norms are unitarily invariant follows easily from
the formulae above. For any unitarily invariant norm, the useful property holds
that ||A*|| = ||A||. The 2-norm satisfies the additional relation || A*A|> = ||4]|3

The unitary invariance of the 2- and Frobenius norms has implications for error
analysis, for it means that multiplication by unitary matrices does not magnify

6.2 MATRIX NORMS 109

Table 6.1. Constants a,q such that ||z||, < apqllz||y, z € C”.

q
|12oo
1|1 Vvn n

p 2|1 1 n
o |1 1 1

Table 6.2. Constants apq such that |All, < apgllAllg, A € C™*". Here, ||A|lar :=
maxi j |a:;| and |Alls :== 3, ; lass]-

q
1 2 o] F M S
1 1 NLD m NLD m 1
2 | vn 1 vm 1 vmn 1
p oo | n vn 1 vn n 1
F | Vn rank(A) vm 1 vmn 1
M 1 1 1 1 1 1
S| n mnrank(A) m ymn mn 1

errors. For example, if A € C**" is contaminated by errors £ and @ is unitary,
then
QA+ E)Q™ = QAQ" + F,

and [|F|2 = [|QEQ*|2 = ||E|l2. In contrast, if we do a general, nonsingular
similarity transformation

X(A+E)X'=XAX"'+G,
then ||Gll2 = | XEX 1|2 < k2(X)||E||2, where
(X)) = IXIHIX |

is the condition number of X. The condition number satisfies x(X) > 1 (kp(X) >
v/n) and can be arbitrarily large. Justification for calling « a condition number is
found in Theorem 6.4 below.

In perturbation theory and error analysis it is often necessary to switch be-
tween norms. Therefore inequalities that bound one norm in terms of another
are required. It is well known that on a finite-dimensional space any two norms
differ by at most a constant that depends only on the dimension (so-called norm
equivalence). Tables 6.1 and 6.2 give attainable inequalities for the vector and
matrix norms of most interest.

The definition of subordinate matrix norm can be generalized by permitting
different norms on the input and output space:

4]0 = max bl

(6.6)

110 NORMS

Note that, in general, the submultiplicative property ||[AB|la,s < |Alla,slBlla,s
does not hold, but we do have

[ABlla,s < | Ally,8llBllay, (6.7)

for any third vector norm || - ||y. The choice @ =1 and § = oo produces the max
norm, mentioned above, ||A||1 00 = max; ; |a;;|.

At least two important results about matrix norms hold for this mixed subor-
dinate norm. The first is a simple formula for the matrix condition number of a
nonsingular A € C**™, defined by

ma,ﬂ(A) := lim sup
—018Ala.0<e]Alla.s

(ll (A+44)7" - A_lllﬁ,a>
GHA_l“ﬂ,a '

Note that this definition uses the || - ||o,s norm on the data space and the | - ||5,o
norm on the solution space, as is natural.
We need the following lemma.

Lemma 6.3. Given vector norms || - ||, and || - || and vectors ¢ € C*, y € C™
such that ||z||o = |lyllg = 1, there exists a matriz B € C™*™ with ||B||o,3 = 1 such
that Bx = y.

Proof. Recall that the dual of the a-norm is defined by |z||Z =
max||w|,=1]2"w|. Let z be a vector dual to z, so that z*z = ||z[|2||z|la = 1, and
hence ||z||2 = 1. Let B = yz*. Then Bz = y and

IBlag = max [lyz*wlls = llylls max |z"w| = |lyllgllzllg =1,

[wlla=1 Jlwlla=1

as required. d

Theorem 6.4. For nonsingular A € C™*™, the matriz condition number &, 5(A)
satisfies
Kop(A) = [Allasl A7 g0 (6.8)

Proof. In view of the expansion
(A+AA) " — A7 = —A7TAAA 4 0(]|A4)?),
the result is proved if we can show that

sup |47 AAA g = |47 I q- (6.9)
18A]la.s<1

That (6.9) holds with the equality replaced by “<” follows from two applications
of (6.7). To show the opposite inequality, we have

|47 AAAT g = max A7 AAAT Yo 2 |47 Adefall A g (6.10)

where, for the lower bound, we have chosen y so that [[A7'y||a = [|[A7}|g,a:
and where A~y = [|A7}||g,oz with ||z]|lo = 1. Now, from Lemma 6.3, there

6.2 MATRIX NORMS 111

exists a matrix AA with ||AA||4,3 = 1 such that AAz = y. In (6.10) this gives
AT AAA™ Y |g0 >]]A_1||%‘a, as required. o

The next result concerns the relative distance to singularity for a matrix A €
(Cnxn:

diste,g(A) = min{ H”A”Ha,,e A+ AA smgular}

It states that the relative distance to singularity is the reciprocal of the condition
number.

Theorem 6.5 (Gastinel, Kahan). For nonsingular A € C**™, we have

dista,6(4) = (| Alla,s1A7 Ig,0) ™" = Ka,a(4) 7"

Proof. If A+ AA is singular, then there exists z # 0 such that (A+AA)z = 0.
Hence

|z]la = A7 AAz]la < A7 5,0l AAzlls < A7 5,0l AAllasle]as
giving

AAlla g

1 Alla,p

To show that a suitable perturbation achieves this lower bound, let ¥ be such that

lylls = 1 and |A" y|la = [|A7}||g,a> and write £ = A~1y. By Lemma 6.3 there

exists B with ||Blla,s = 1 such that Bz/|z|l« = —y. Letting AA = B/||z||a

we have ||AA|lag/llAllas = ko p(A)71, and A + AA is singular because (A +
AMAly=0. O

- > I‘Sa’ﬁ(A)—l.

The next lemma collects some results that will be needed in later chapters.
Lemma 6.6. Let A,B € R™*",
(@) If llajll2 < [Ibjll2, 5 = 1:m, then
|Alr < IBllr, llAll2 < Vrank(B) ||Bll2, |A] < ee”|B].
(b) If |A| < B then ||A]l2 < [|B]2-
(c) If|A| < |B| then ||All2 < \/rank(B) ||B|;.
(d) 14]lz < [4] llz < v/rank(A) || All2.

Proof. The first inequality of (a) is trivial. For the second, we have, using

Table 6.2,
[All2 < |Allr < IBllF < Vrank(B) || B],.

The third inequality follows from

laj| < llasllze < 1bjllze < N1bllre = (€71b5)e = (ee”) by].

112 NORMS

For (b) we have

4l = max [[Az> < max |||Allall2 < max || Bla [l = Bl

|
Finally, (c) is a special case of (a), and (d) is a special case of (b) and (c). O

Note that the second inequality in (a) is sharp: there is equality if A = B has
rank 1 and in the case A = ee”, B = y/nlI, in which B has full rank.

6.3. The Matrix p-Norm
The matrix p-norm is the norm subordinate to the Hélder p-norm:

A
“A“p = max H xllp,
220 |zl

p>1. (6.11)
Formulae for ||A]|, are known only for p = 1,2, 00. For other values of p, how to
estimate or compute ||A||, is an interesting problem, the study of which, as well
as being interesting in its own right, yields insight into the properties of the 1, 2,
and oo norms.

By taking = = e; in (6.11), using (6.4), and using (6.21) below, we can derive
the bounds, for A € C™*",

max||A(, 3)llp < [|4llp < n' 7P max JAC, j)]lp, (6.12)
max A)llp/p-1) < [1Allp < m!/P max [A,) llp/(p-1)- (6.13)
Matrix norms can be compared using the following elegant result of Schneider

and Strang (1018, 1962] (see also [636, 1985, Thm. 5.6.18]): if | - || and || - |5
denote two vector norms and the corresponding subordinate matrix norms, then

for A € Cm>n
A
max 14l = (max |]:r||a)< max ”x“ﬂ) (6.14)
A Al ~ oz [izllp) \ozet Yl

From (6.4) and (6.14), we have, when m = n,

1 1
max “A“ZH — n(min(pwpz) - max(phpg)). (615)
A#0 “AHPQ

Note that, unlike for vectors, p; < p, does not imply ||A|lp, > ||Al|p,. The result
(6.15) implies, for example, that for all p > 1

A _
T2 <y, <m=soal, (6.16)

All2 3
nlll——l/Pﬂl/Zl <A, < a2 Al (6.17)

Upper bounds for ||Al|, that do not involve m or n can be obtained from
the interesting property that log||Al|, is a convex function of 1/p for p > 1

6.3 THE MATRIX p-NORM 113

hadamard(12) gallery('chebspec’,8)
15 : . 50 . .
10} 40+
5| : 30+
0 : : 20 . .
0 5 10 15 0 5 10 15
rand(25) 1/p versus log(norm(A,p))
% | ' * \'/
l | l v
10} : 27 \/
0 - . 1 .
0 5 10 15 0 0.5 1

Figure 6.1. Plots of p versus ||A||p, for 1 < p < 15. Fourth plot shows 1/p versus log || 4|,
for the matrices in the first three plots.

(see Figure 6.1), which is a consequence of the Riesz—Thorin theorem [548, 1952,
pp. 214, 219], (489, 1991]. The convexity implies that if f(a) =][A||1/a, then for
0<ap<1,

log f (B + (1 — 0)8) < flog f(a) + (1 —8)log f(B), 0<HO<I.
Writing p; = 1/a and p, = 1/0, this inequality can be expressed as

< AP |AlI1-# _ P1p2 .
HAHP — ” “pl Il ”p2 3 p (1 _ 9)]71 + 9p2’ (6 18)
1<pi,pp<oo, 0<HLL
Two interesting special cases are
IAllp < [AILP1AlIS 7 (6.19)
and 2/p—1 2-2
lAll < AP 141377, 1<p<2. (6.20)
Note that (6.19) includes the well-known inequality || 4]z < /1l All1][4] co-
Two further results that are familiar for p = 1,2, co are
1 1
A%l = |Allq, - +-=1 6.21
4™l = [[4llq s (6.21)

(see also Problem 6.3), and

I+ 7]

= max(||A]lp, |[All¢)-

114 NORMS

The bounds (6.16) and (6.17) imply that given the ability to compute || 4|1,
|All2, and ||A|lc We can estimate ||A||, correct to within a factor n!/4. These a
priori estimates are at their best when p is close to 1, 2, or oo, but in general
they will not provide even one correct significant digit. The bound in (6.18) can
be much smaller than the other upper bounds given above, but how tight it is
depends on how nearly log||Al|, is linear in p. Numerical methods are needed to
obtain better estimates; these are developed in Chapter 15.

6.4. Singular Value Decomposition
Any matrix A € C™*™ has a singular value decomposition (SVD)
A=UxXVv* X =diag(o1,02,...,0p) € C™*™, p=min(m,n),

where 01 > 09> --- >0, >20and U € C™*™, V € C**" are both unitary. The
o; are the singular values of A and the columns of U and V are the left and right
singular vectors of A, respectively.

The rank of A is equal to the number of nonzero singular values. If A is real,
U and V can be taken to be real.

For any unitarily invariant norm, ||4|| = |||, and hence

n 1/2
1Al = o1 (A), ||A1|F=(Zaf) . (6.22)

=1

The SVD is an extremely useful tool in numerical linear algebra. Aside from
exploiting these norm relations, our main use of the SVD in this book is in Chap-
ter 20 on the least squares problem.

6.5. Notes and References

The matrix condition number appears to have been first introduced explicitly
by Turing [1166, 1948], who defined, for example, the N-condition number of
Ae RY™™ asn ! N(A)N(A™1), where N(-) is Turing’s notation for the Frobenius
norm. Todd [1140, 1968] gives a short survey of the matrix condition number with
many references.

Theorem 6.2 was originally proved by Bauer, Stoer, and Witzgall, in a paper
that contains many interesting results on monotonic norms [95, 1961].

Tables of constants in inequalities between different norms have been given by
various authors; see, for example, Stone [1088, 1962] and Zielke [1282, 1988].

Our development of the mixed subordinate norm | - ||, is based on that of
D. J. Higham [573, 1995).

Theorem 6.5 is proved by Kahan [687, 1966, pp. 775-776], who attributes it to
Gastinel but gives no reference. For the 2-norm, this result goes back to a paper
by Eckart and Young [370, 1936]. Theorem 6.5 is an instance of a relationship that
holds for many problems: the condition number is the reciprocal of the distance
to the nearest singular problem (one with an infinite condition number). This
relationship applies to matrix inversion, eigenvalue and eigenvector computation,

PROBLEMS 115

polynomial zero-finding, and pole assignment in linear control systems. For an
in-depth study see Demmel [309, 1987].

Schneider and Weinberger [1019, 1998] study classes of matrices for which
(6.14) is attained in the case of Hélder p-norms.

Direct proofs of inequality (6.19) can be found in Kato [716, 1976, p. 29] and
Todd [1143, 1977, pp. 25-26]. The inequality does not seem to be well known.

For historical comments on the development of norms in numerical analysis,
see Householder [644, 1964, Chap. 2] and Stewart and Sun [1083, 1990, Chap. 2.

For more details on the SVD see Golub and Van Loan [509, 1996, §2.5.3],
Stewart and Sun [1083, 1990, pp. 30-34], and Horn and Johnson [636, 1985, §7.3],
(637, 1991, §3.1]. The history of the SVD is described by Stewart [1074, 1993] and
Horn and Johnson [637, 1991, §3.0].

Problems

Problems worthy
of attack

prove their worth
by hitting back.

— PIET HEIN, Grooks (1966)

6.1. Prove the inequalities given in Tables 6.1 and 6.2. Show that each inequality
in Table 6.2 (except the one for a4 ,) is attainable for a matrix of the form A = zyT,
where z,y € {e,e;}, where e = [1,1,...,1]7. Show that equality in ||A|s <
agollAll2 is attained for square real matrices A iff A is a scalar multiple of a
Hadamard matrix (see §9.4 for the definition of a Hadamard matrix), and for
square complex matrices if ars = exp(2mi(r —1)(s — 1)/n) (this is a Vandermonde
matrix based on the roots of unity).

6.2. Let z,y € C**". Show that, for any subordinate matrix norm, |zy*| =
lzll llyllo-

6.3. Show that a subordinate matrix norm | - | on C**" satisfies
Rey*Az
Al = max ——2is.
=920 [yl pllx|l
Deduce that ||A*|| = || Al| p, where the latter norm is the norm subordinate to the
vector norm || - ||p-

From ancient times until now the
study of magic squares has flourished as a kind of cult,
often with occult trappings, whose initiates range from

such eminent mathematicians as Arthur Cayley and Oswald Veblen
to laymen such as Benjamin Franklin.

— MARTIN GARDNER, More Mathematical Puzzles and Diversions (1961)

6.4. Let M,, € R*"*™ denote a magic square matrix, that is, an n x n matrix
containing the integers from 1 to n? arranged in such a way that the row and
column sums are all the same. Let pn denote the magic sum of M,, (thus, u, =
n(n? + 1)/2). Show that ||My|lp, = wn for all 1 < p < oco. (This result is a

116 NORMS

special case of an apparently little-known result of Stoer and Witzgall, which
states that the norm of a doubly stochastic matrix is 1 for any norm subordinate
to a permutation-invariant absolute vector norm [1087, 1962].)

6.5. Show that |ABC||r < ||A|l2||B||r||Cl|2 for any A, B, and C such that the
product is defined. (This result remains true when the Frobenius norm is replaced
by any unitarily invariant norm (637, 1991, p. 211].)

6.6. Show that for any nonsingular A € C**™,

[EE

[zl

Ky g(A) = —— 1%l
o= g
z#0

maXg=0

[zla
6.7. Show that for any A € C"*™ and any consistent matrix norm, p(A) < ||A|],

where p is the spectral radius.

6.8. Show that for any A € C**™ and é§ > 0 there is a consistent norm || - || (which
depends on A and §) such that ||A|| < p(A) + J, where p is the spectral radius.
Hence show that if p(A) < 1 then there is a consistent norm ||-|| such that || A|| < 1.

6.9. Let A € C™*". Use (6.22) to obtain a bound of the form ci1]|A|2 < [|A||r <
c2||A||2, where ¢; and ¢, are constants that depend on n. When is there equality
in the upper bound? When is there equality in the lower bound?

6.10. Show that
I F
0 I

Deduce that when ||F|| = 1, the norm is (1 + v/5)/2, the golden ratio.

6.11. Let A € C™*". Prove that (a) ||Al|l1,6 = max; ||A(:, 5)|ls, and (b) ||Aja,c0 =
max; ||A(,:)*||5. What is || Al|1,c0?

6.12. (Tao [1128, 1984]) Show that if A is Hermitian positive definite then

_ \/ 2+ |IFII3 + 1P llzy/3 £ FI
2

2

|A]loo,1 = max{z*Az : ||z||l0c = 1}.
(Rohn [992, 1995] shows that the problem of computing [|A||s,1 is NP-hard.)
6.13. Prove that if H € R™*" is a Hadamard matrix then
| Hllp = max{n!/?,n1~1/7}.
(See §9.4 for the definition of a Hadamard matrix.)
6.14. Show that if A € R™*™ has at most p nonzeros per row then
max | AG,3)lp < 14l < 472 max [4G, (6.23)

while if A has at most g nonzeros per column then

max || AG, g < [4llp < 1572 max | 4G,)l (6.24)

where p~! 4+ ¢~ = 1. (These inequalities generalize (6.12) and (6.13).)

PROBLEMS 117

6.15. Show that if A € C"*™ then for any p-norm (1 < p < o),

1Allp < 1Al < n™0 /PP Al < Val| Allp.

6.16. Define the function v : C* — R by

n

v(z) = Z(|Rezi| + | Im z;]).

i=1
Is v a vector norm on C"? Derive an explicit expression for

v(A) = r(n?icl v(Az), AeC™*".

(For the relevance of v see §27.8.)

Chapter 7

Perturbation Theory for Linear Systems

Our hero is the intrepid, yet sensitive matrix A.
Our villain is E, who keeps perturbing A.
When A is perturbed he puts on a crumpled hat: A=A+ E.

— G. W. STEWART and JI-GUANG SUN, Matrix Perturbation Theory (1990)

T he expression ‘ill-conditioned’ is sometimes used merely as a

term of abuse applicable to matrices or equations ...

It is characteristic of ill-conditioned sets of equations that

small percentage errors in the coefficients given may lead to

large percentage errors in the solution.

— A. M. TURING, Rounding-Off Errors in Matrix Processes (1948)

119

120 PERTURBATION THEORY FOR LINEAR SYSTEMS

In this chapter we are concerned with a linear system Az = b, where A € R™*™.
In the context of uncertain data or inexact arithmetic there are three important
questions:

(1) How much does z change if we perturb A and b; that is, how sensitive is
the solution to perturbations in the data?

(2) How much do we have to perturb the data A and b for an approximate
solution y to be the exact solution of the perturbed system—in other words, what
is the backward error of y?

(3) What bound should we compute in practice for the forward error of a given
approximate solution?

To answer these questions we need both normwise and componentwise pertur-
bation theory.

7.1. Normwise Analysis

First, we present some classical normwise perturbation results. We denote by
|| - || any vector norm and the corresponding subordinate matrix norm. As usual,
k(A) = ||A||||[A7*| is the matrix condition number. Throughout this chapter
the matrix F and the vector f are arbitrary and represent tolerances against
which the perturbations are measured (their role becomes clear when we consider
componentwise results).

Our first result makes precise the intuitive feeling that if the residual is small
then we have a “good” approximate solution.

Theorem 7.1 (Rigal and Gaches). The normwise backward error
ng,s(y) = min{e: (A+ AA)y =b+ Ab, |AA| <€l El, |Abll <ellfll} (7-1)
is given by

ns,s(y) = | I (7.2)

[E[H Iyl + 11£117
wherer = b — Ay.

Proof. It is straightforward to show that the right-hand side of (7.2) is a lower
bound for 7z ¢(y). This lower bound is attained for the perturbations

E]| Nyl T I
AApin = 74— ——T2" Abpin = — = ——— T, (7.3)
IE| Myl + 111l EI Nyl + [1£1]
where z is a vector dual to y (see §6.1). 0

For the particular choice F' = A and f = b, ng 7(y) is called the normuwise
relative backward error.
The next result measures the sensitivity of the system.

Theorem 7.2. Let Az = b and (A + AA)y = b+ Ab, where ||AA|| < €| E|| and
|Ab|| < €|l fll, and assume that €| A} ||[E|| < 1. Then

Iz =yl ¢ AT g
Izl = 1—¢|A-TIE] (Iz + A7 “E”>) (7.4)

7.1 NORMWISE ANALYSIS 121

and this bound is attainable to first order in €.

Proof. The bound (7.4) follows easily from the equation A(y — z) = Ab—
AAz + AA(z — y). Tt is attained to first order in € for AA = €||E|| |z||wvT and
Ab = —¢||f|lw, where |lw| =1, ||A7'w|| = ||A7}|], and v is a vector dual to z.
]

Associated with the way of measuring perturbations used in these two theorems
is the normwise condition number

|4z

el|<]

kg f(A,z) = lin(l) sup 1 (A+ AA)(z + Azx) = b + Ab,

laA] < €| Bll, 140l < el]l }.

Because the bound of Theorem 7.2 is sharp, it follows that

A7! _
e g(a,) = L amsy sy, &
For the choice E = A and f = b we have k(A) < kg §(A,z) < 26(A), and the
bound (7.4) can be weakened slightly to yield the familiar form

lz =yl 2en(4)
] = T—en(A)’

A numerical example illustrates the above results. Let A be the 6 x 6 Vander-
monde matrix with (7,5) element j2(:~1) and let b = e; be the first unit vector,
so that z is the first column of A~1. We take y to be the approximate solution to
Az = b computed by Gaussian elimination with partial pivoting. Computations
are performed in MATLAB (u ~ 1.1 x 107'%). We find that n, ,(y) = 4.16 x 10720
for the co-norm, and koo (A) = 1.93 x 108. This is an admirably small backward
error, but it may be uninformative for two reasons. First, the elements of A vary
over 7 orders of magnitude, so while our backward error perturbations are small
compared with the large elements of A, we may be making large perturbations
in the small elements (indeed we are in this particular example). Second, we are
perturbing the zero elements of b (as can be seen from (7.3) together with the fact
that for this example the residual 7 has no zero entries); this is unsatisfactory if
we wish to regard y as the first column of the inverse of a perturbed matrix.

Next, let b = Ae, where e = [1,1,...,1]7, and let z be the solution to the
perturbed system (A + AA)z = b, where AA = tol|A| with tol = 1070; thus we
are perturbing each element of A by a small relative amount. We find that

||IL‘ _z”oo

=1. 10710 6
el 100107 (7.6)

while the corresponding bound from (7.4) with € = tol, £ = 4, and f = 0 is
1.97 x 10~2. Thus the normwise forward error bound is extremely pessimistic for
this special choice of perturbation.

To obtain a more satisfactory backward error measure and a sharper pertur-
bation bound in this example, we need componentwise analysis.

122 PERTURBATION THEORY FOR LINEAR SYSTEMS

7.2. Componentwise Analysis
The componentwise backward error is defined as
wg ¢(y) = min{e: (A+ AA)y = b+ Ab, |AA| < eE, |Ab| <ef}, (7.7)

where E and f are now assumed to have nonnegative entries. Absolute values and
inequalities between matrices or vectors are understood to hold componentwise. In
this definition each element of a perturbation is measured relative to its individual
tolerance, so, unlike in the normwise definition, we are making full use of the n?+n
parameters in E and f.

How should F and f be chosen? There are four main choices of interest.
The most common choice of tolerances is E = |A| and f = |b|, which yields the
componentwise relative backward error. For this choice

aij:0=>Aaij:0 and b1=0=>Ab1:0

in (7.7), and so if wg ¢(y) is small then y solves a problem that is close to the
original one in the sense of componentwise relative perturbations and has the
same sparsity pattern. Another attractive property of the componentwise relative
backward error is that it is insensitive to the scaling of the system: if Az = b is
scaled to (SlA.Sz)(Sglx) = 51b, where S; and S; are diagonal, and y is scaled to
S5y, then w remains unchanged.

The choice E = |Alee”, f = |b| gives a row-wise backward error. The constraint
|AA| < €F is now |Aa;j| < ea;, where a; is the 1-norm of the ith row of A4, so
perturbations to the ith row of A are being measured relative to the norm of that
row (and similarly for b). A columnwise backward error can be formulated in a
similar way, by taking E = ee”|A| and f = ||b||;e—here, perturbations to the jth
column of A (or to b) are measured relative to the 1-norm of that column.

The fourth natural choice of tolerances is E = ||A||ee” and f = ||b||e, for which
wg ¢(y) is the same as the normwise backward error 7z ;(¥), up to a constant.

As for the normwise backward error in Theorem 7.1, there is a simple formula

for wE,f(y).

Theorem 7.3 (Oettli and Prager). The componentwise backward error is
given by
||
w =max —————, 7.8
W) = BT). ™9
where 1 = b — Ay, and £/0 is interpreted as zero if £ = 0 and infinity otherwise.

Proof. It is easy to show that the right-hand side of (7.8) is a lower bound for
w(y), and that this bound is attained for the perturbations

AA=D\ED,, Ab=—-Df, (7.9)

where D; = diag(ri/(E|y| + f)i) and D, = diag(sign(yi)). |

The next result gives a forward error bound corresponding to the component-
wise backward error.

7.2 COMPONENTWISE ANALYSIS 123

Theorem 7.4. Let Az = b and (A + AA)y = b+ Ab, where |AA| < €E and

|Ab| < €f, and assume that €| |[A"Y| E'|| < 1, where ||-|| is an absolute norm. Then
llz — € AT (B2l + £) |
< , (7.10)
Izl 1—elllA7YE] [l

and for the co-norm this bound is attainable to first order in €.

Proof. The bound (7.10) follows easily from the equation A(y —z) = Ab —
AAz + AA(z — y). For the co-norm the bound is attained, to first order in ¢, for
AA =eD1ED, and Ab = —eD, f, where D, = diag(sign(z;)) and D; = diag(¢;),
where £; = sign(A™")x; and || |A7Y(|Elz]| + f) llo = (AT (IE|2] + £)),- 0

Theorem 7.4 implies that the condition number

|42l

€l|z oo

condg (A, z) = 1iII(1] sup{ : (A4 AA)(z + Az) = b+ Ab,
A4 < €B, |Ab < f }

is given by

-1 E
cond . (4,2) = 114 |(|||z|||m|+f) loo (7.11)
This condition number depends on z or, equivalently, on the right-hand side b. A

worst-case measure of sensitivity applicable to all z is

condg, ¢(A) = maxcondg ¢(A,z), (7.12)

where in practice we can take any convenient approximation to the maximum that
is correct to within a constant factor.

For the special case E = |A| and f = |b| we have the condition numbers
introduced by Skeel [1040, 1979]:
A1 0o
cond(4,z) := -M%, (7.13)
cond(A) := cond(4,€) = | |A7|A] [loo < Koo(A). (7.14)

These differ from cond, 4)s(4,) and cond, 4,5(A), respectively, by at most a
factor 2.

How does cond compare with x? Since cond(A) is invariant under row scaling
Az = b — (DA)z = Db, where D is diagonal, it can be arbitrarily smaller than
Koo(A). In fact, it is straightforward to show that

min{ ko (DA) : D diagonal } = cond(A), (7.15)

where the optimal scaling Dy equilibrates the rows of A, that is, DrA has rows
of unit 1-norm (Dg|Ale =€)

Chandrasekaran and Ipsen [217, 1995] note the following inequalities. First,
with Dpg as just defined,

Koo (A)

124 PERTURBATION THEORY FOR LINEAR SYSTEMS

(these inequalities imply (7.15)). Thus cond(A) can be much smaller than ko (A)
only when the rows of A are badly scaled. Second, if D¢ equilibrates the columns
of A (eT|A|Dc = €T) then

fld) A~ e;]lo0
nkwo(Dc) 5 [[A7h

< cond(4,z) < Ko (4).

These inequalities show that cond(A,z) can be much smaller than x.,(A) only
when the columns of either A or A~! are badly scaled.

Returning to the numerical example of §7.1, we find that Wg s (y) =5.76x10715
for E = |A| and f = |b] or f = 0. This tells us that if we measure changes to A in
a componentwise relative sense, then for y to be the first column of the inverse of
a perturbed matrix we must make relative changes to A of just over one order of
magnitude larger than the unit roundoff. For the perturbed system, Theorem 7.4
with € = tol, E = |4], and f = 0 gives the bound

£ — 2lloo

: <4.37x1077,
zloo

which is five orders of magnitude smaller than the normwise bound from The-
orem 7.2, though still three orders of magnitude larger than the actual forward
error (7.6).

An example of Kahan [687, 1966] is also instructive. Let

2 -1 1 2(1+¢)
A=| -1 € €|, b= —€ , (7.17)
1 € € €

where 0 < € < 1, so that z = [¢, ~1,1]7. The normwise condition number ., (A)
is 2(1 4+ €71), so the system is very sensitive to arbitrary perturbations in A and
b. Moreover,

1 € €

2¢+1
A= | T2 UL,

2

62“:1 11

so cond(A) = 3 + (2€)~!, which implies that the system is also very sensitive to
componentwise perturbations for some right-hand sides. However, cond(A4,z) =
5/2 + ¢, so for this particular b the system is very well conditioned under compo-
nentwise perturbations.

A word is in order concerning the choice of condition number. Every condi-
tion number for a linear system is defined with respect to a particular class of
perturbations. It is important to use the right condition number for the occasion.
For example, if Z is a computed solution to Az = b and we know its normwise
backward error 74 ,(Z), then it is the condition number k(A) that appears in the
relevant forward error bound (multiplying 74 ,(Z)) and therefore tells us some-
thing about the accuracy of Z. The componentwise condition number cond(A4, x)
is relevant only if we are dealing with the componentwise relative backward error,

7.3 SCALING TO MINIMIZE THE CONDITION NUMBER 125

Table 7.1. Four classes of perturbations and the corresponding condition numbers. The
terms cond(A,x) and cond(A) are defined in (7.13) and (7.14).

Componentwise
relative Row-wise Columnwise Normwise
E |A] |AleeT eeT|A| |A]|ceeT
f lo] |5] llbll1e llb]|coe
condg, ¢(A,x) cond(A4, T) cond(A) Hllfll"olc ||A_1||w% Koo(A)
condg,;(A) cond(A) ncond(A) Koo(A) Koo(A)

Wil b (Z). Looked at another way, each algorithm has an associated error analysis
that cietermines the condition number relevant to that algorithm.

Table 7.1 summarizes the four main classes of perturbations and the corre-
sponding condition numbers condg, s(A,z) and condg,s(A). The row-wise and
columnwise condition numbers in the table (which are lower bounds that are at
most a constant factor smaller than the actual condition numbers) follow from
Problem 7.6.

7.3. Scaling to Minimize the Condition Number

In the last section we noted the invariance of cond(A) under row scaling, which
contrasts with the strong dependence of £.,(A) upon the row scaling. The oppor-
tunity to scale the rows or columns of A arises in various applications, so we now
take a closer look at the effect of scaling on the normwise condition number.

First, we consider one-sided scaling, by giving a generalization of a well-known
result of van der Sluis {1176, 1969]. It shows that, for one-sided scaling in a Hélder
p-norm, equilibrating the rows or columns is a nearly optimal strategy. We state
the result for rectangular matrices A, for which we define k,(A4) = || A|p|| A7 |lp,
where A* is the pseudo-inverse of A (see Problem 20.3).

Theorem 7.5 (van der Sluis). Let A € R™*™, let Dy C R¥** denote the set of
nonsingular diagonal matrices, and define

Dc := diag([|A(:)llp) ™}, Dr = diag(J|AG,2)]) 7"

Then
kp(AD¢) < nl-1/P :I;rglifr)l kp(AD) if rank(A) = n, (7.18)
kp(DrA) < m!/P Drrél%)n kp(DA) if rank(A) = m. (7.19)

Proof. For any X € R™*™ we have, from (6.12),

max | A(:,9)llp < [Allp < n' 7P max | A, 5)llp- (7.20)

Therefore
|ADc |, < n*YP. (7.21)

126 PERTURBATION THEORY FOR LINEAR SYSTEMS

Now, for any D € D,,
|IDz' AT |, = |IDG'D - DTT A%,
< mJaX(Idjjl IAC,)l IDT Al

< ||AD|lID™ A* ||, = kp(AD), (7.22)

using the first inequality in (7.20). Multiplying (7.21) and (7.22) and minimizing
over D, we obtain (7.18). Inequality (7.19) follows by noting that k,(DA) =
kq(ATD), where p~! + ¢~ 1 =1 (see (6.21)). o

For p = o0, (7.19) confirms what we already know from (7.15) and (7.16) for
square matrices: that in the co-norm, row equilibration is an optimal row scaling
strategy. Similarly, for p = 1, column equilibration is the best column scaling, by
(7.18). Theorem 7.5 is usually stated for the 2-norm, for which it shows that row
and column equilibration produce condition numbers within factors /m and /n,
respectively, of the minimum 2-norm condition numbers achievable by row and
column scaling.

As a corollary of Theorem 7.5 we have the result that among two-sided diag-
onal scalings of a symmetric positive definite matrix, the one that gives A a unit
diagonal is not far from optimal.

Corollary 7.6 (van der Sluis). Let A € R™*™ be symmetric positive definite and
let D, = diag(ai_il/?). Then

k2(D+AD.) <m min r(DAD). (7.23)

Proof. Let A = RTR be a Cholesky factorization, note that xo(DAD) =
k2(RD)?, and apply Theorem 7.5 to RD. O

Is the scaling D, in Corollary 7.6 ever optimal? Forsythe and Straus [432,
1955] show that it is optimal if A is symmetric positive definite with property A
(that is, there exists a permutation matrix P such that PAP7 can be expressed
as a block 2 x 2 matrix whose (1,1) and (2,2) blocks are diagonal). Thus, for
example, any symmetric positive definite tridiagonal matrix with unit diagonal is
optimally scaled.

We note that by using (6.23) in place of (7.20), the inequalities of Theorem 7.5
and Corollary 7.6 can be strengthened by replacing m and n with the maximum
number of nonzeros per column and row, respectively.

Here is an independent result for the Frobenius norm.

Theorem 7.7 (Stewart and Sun). Let A = [ay,...,a,] € R™™ be nonsingular,
with B := A~ = [by,...,b,]T, and let Do = diag((||bj]|2/a;ll2)/?). Then

Z,: lajl2llbsll = kp(ADc) = min kp(AD).

7.4 THE MATRIX INVERSE 127

Proof. For D = diag(d;) € D,, we have, using the Cauchy-Schwarz inequality,
1/2 1/2
~(Sla) " (Tami) 2 Sl
J J J

with equality if dj||a;|2 = adj_l||bj||2 for all j, for some a # 0. There is equality
for d2 = ||bjll2/llajll- O

As we have seen in this and the previous section, the minimum value of ko, (D A)
is |||A7!||A||lco- The next result shows that for two-sided scalings the matrix
|A~1||A| again features in the formula for the minimal condition number. A ma-
trix is irreducible if it cannot be symmetrically permuted to block triangular form.
A Perron vector of B > 0 is a nonnegative eigenvector corresponding to the eigen-
value p(B), where p denotes the spectral radius.

Theorem 7.8 (Bauer). Let A € R™*™ be nonsingular and suppose that |A||A~!|
and |A7!||A] are irreducible. Then

p D feo(D1AD) = p(1A]lATY). (7.24)

The minimum is attained for Dy = diag(z)™! and D, = diag(|A™!|x), where
x > 0 is a right Perron vector of |A||A™Y| (so that |A||A7Y| = p(|A||A7Y))x).

Proof. See Problem 7.10. 0

Rump [1002, 2002] shows that (7.24) holds for any nonsingular A if the mini-
mum on the left-hand side is replaced by an infimum.
For the Kahan example (7.17),

P(IA || A]) & 2.62 + 1.79 < 3+ (26" = || |A"Y[JA| [} oo,
and, in fact, keo(DAD) = 3 for D = diag(e!/?,e71/2,e-1/2?), so a symmetric two-

sided scaling is nearly optimal in this case.

7.4. The Matrix Inverse

We briefly discuss componentwise perturbation theory for the matrix inverse. With
X :=A"1and X + AX := (A+ AA)~!, a componentwise condition number is

18X loo HATEIA™Y Nl
= < < .
ug(A) = lim sup{ X1 1 |AA| < eE} < AT . (7.25)

In general, the inequality is strict, but there is equality when |A~!| = D;A™1D,
for D; of the form diag(+1) [444, 1992, Thm. 1.10], [479, 1982]. Another compo-
nentwise condition number is evaluated in Problem 7.11. We saw in Theorem 6.5
that the reciprocal of the normwise condition number for matrix inversion is the
normwise relative distance to singularity. Is the same true for an appropriate
componentwise condition number? The componentwise distance to singularity,

dg(A) := min{ e : A+ AA singular, |AA| < €¢E '},

128 PERTURBATION THEORY FOR LINEAR SYSTEMS

has been characterized by Rohn [990, 1989], [991, 1990] as

1
maxg g, Po(S1A71S:E)’

dp(A) =

where the maximum is taken over all signature matrices S; = diag(+1) and where
po(X) = max{|\|:) is a real eigenvalue of A}.

This formula involves 4™ eigenproblems and thus is computationally intractable
(in fact it has been shown to be NP-hard by Poljak and Rohn [945, 1993]).

Demmel [313, 1992] shows by complexity arguments that there can be no sim-
ple relationship between dg(A4) and the quantity || |A~}|F ||, Which is an upper
bound for pz(A). However, dg(A) behaves like 1/p(|A7Y|E), as

1 (3 +2v2)n
oaTE) = WS iaE) (7:26)
and the upper bound is almost sharp because examples are known for which
dg(A) = n/p(|A~Y|E). The lower bound was obtained by Demmel (313, 1992], and
the more difficult upper bound and the observation about its sharpness are due
to Rump [999, 1999)] (see also the references therein for the history of the bound).
In the case E = |A| these inequalities are aesthetically pleasing because dj4(A) is
invariant under two-sided diagonal scalings of A and p(]A~!||A|) is the minimum
oo-norm condition number achievable by such scalings, as shown by Theorem 7.8.

7.5. Extensions

The componentwise analyses can be extended in three main ways.
(1) We can use more general measures of size for the data and the solution.
Higham and Higham [575, 1992] measure AA, Ab, and Az by

vp([(Aaij/eiz) (Ab:/fi)]), vp((Azi/gy)),

where vp(A) = (Z” |aij[7’)1/p, 1 < p < oo, and the e;;, f;, and g; are tolerances.
They show that the corresponding backward error is given by the explicit formula

Gl

where r = b — Ay, D; = diag(ej1, - .- ,ejn,fj), and p~! + ¢~ = 1; bounds for the
corresponding condition number are also obtained. Theorem 7.3, and Theorem 7.4
with the co-norm, correspond to p = 0o and g; = ||z||- If we take p = co and
g = |z|, we are measuring the change in the solution in a componentwise relative
sense, as vp((Ax;/g;)) = max; |Az;|/|x;|, and the condition number is (575, 1992]

|| diag(|zi)) " AT [(Bla] + £)lloo-

This latter case has also been considered by Rohn [989, 1989] and Gohberg and
Koltracht [494, 1993]. It is also possible to obtain individual bounds for | Ax;|/|z;|,

7.6 NUMERICAL STABILITY 129

i = 1: n, by refraining from taking norms in the analysis; see Chandrasekaran and
Ipsen [217, 1995] and Problem 7.1.

(2) The backward error results and the perturbation theory can be extended to
systems with multiple right-hand sides. For the general v, measure described in
(1), the backward error can be computed by finding the minimum p-norm solutions
to n underdetermined linear systems. For details, see Higham and Higham [575,
1992].

(3) Structure in A and b can be preserved in the analysis. For example, if A is
symmetric or Toeplitz then its perturbation can be forced to be symmetric or Toep-
litz too, while still using componentwise measures. References include Higham and
Higham [574, 1992] and Gohberg and Koltracht [494, 1993] for linear structure,
and Bartels and D. J. Higham [86, 1992] and Sun [1109, 1998] for Vandermonde
structure. A symmetry-preserving normwise backward error for linear systems is
explored by Bunch, Demmel, and Van Loan [180, 1989], while Smoktunowicz [1053,
1995) considers the componentwise case (see Problem 7.12). Symmetry-preserving
normwise condition numbers for the matrix inverse and linear systems are treated
by D. J. Higham [573, 1995, who shows that they cannot differ much from the
general condition numbers. Rump [997, 1998] proves the same thing for compo-
nentwise condition numbers, and also shows that when symmetry is exploited in
the definitions the componentwise condition number and componentwise distance
to singularity can differ by an arbitrary factor.

7.6. Numerical Stability

The backward errors examined in this chapter lead to definitions of numerical
stability of algorithms for solving linear systems. Precise and formal definitions of
stability can be given, but there are so many possibilities, across different problems,
that to define and name each one tends to cloud the issues of interest. We therefore
adopt an informal approach.

A numerical method for solving a square, nonsingular linear system Az = b is
normuwise backward stable if it produces a computed solution such that n A’b(i) is of
order the unit roundoff. How large we allow 7 A’b(f)/ u to be, while still declaring
the method backward stable, depends on the context. It is usually implicit in
this definition that 7, ,(Z) = O(u) for all A and b, and a method that yields
Na(Z) = O(u) for a particular A and b is said to have performed in a normwise
backward stable manner.

The significance of normwise backward stability is that the computed solution
solves a slightly perturbed problem, and if the data A and b contain uncertainties
bounded only normwise (A — A + AA with ||AA4| = O(u||A||) and similarly for
b), then Z may be the exact solution to the problem we wanted to solve, for all we
know.

Componentwise backward stability is defined in a similar way: we now require
the componentwise backward error W) Al (Z) to be of order u. This is a more
stringent requirement than normwise backward stability. The rounding errors
incurred by a method that is componentwise backward stable are in size and effect
equivalent to the errors incurred in simply converting the data A and b to floating
point numbers before the solution process begins.

130 PERTURBATION THEORY FOR LINEAR SYSTEMS

Table 7.2. Backward and forward stability.

Componentwise backward stability = Componentwise forward stability

~ T—-T
w)a), 161 (Z) = O(u) I izl I = O(cond(A,z)u)
4
Normwise backward stability = Normwise forward stability
= T—T
nas(@) = O(w) I = I~ ()

If a method is normwise backward stable then, by Theorem 7.2, the forward
error ||z —Z||/||z|| is bounded by a multiple of k(A)u. However, a method can pro-
duce a solution whose forward error is bounded in this way without the normwise
backward error 7, ,(Z) being of order u. Hence it is useful to define a method
for which ||z — Z|| / |z|| = O(k(A)u) as normwise forward stable. By similar rea-
soning involving w| A],(b](ff)’ we say a method is componentwise forward stable if
llz — Z||/||z|| = O(cond(A, z)u). Table 7.2 summarizes the definitions and the re-
lations between them. There are several examples in this book of linear-equation-
solving algorithms that are forward stable but not backward stable: Cramer’s
rule for n = 2 (§1.10.1), Gauss-Jordan elimination (§14.4), and the seminormal
equations method for underdetermined systems (§21.3).

Other definitions of numerical stability can be useful (for example, row-wise
backward stability means that Ul AJeeT,Ibl(E) = O(u)), and they will be introduced
when needed.

7.7. Practical Error Bounds

Suppose we have a computed approximation T to the solution of a linear system
Az = b, where A € R®*™. What error bounds should we compute?
The backward error can be computed exactly, from the formulae

P
125 @) = BTN+ 171

wp ;(T) = max (7.27)

o (ElZl+ £)i’
at the cost of one or two matrix—-vector products, for r = b — AZ and E|Z|. The
only question is what to do if the denominator is so small as to cause overflow or
division by zero in the expression for wg ;(Z). This could happen, for example,
when E = |A| and f = |b| and, for some i, a;;jz; = 0 for all j, as is most likely in
a sparse problem. LAPACK’s xyyRFS (“refine solution”) routines apply iterative
refinement in fixed precision, in an attempt to satisfy Wi S U If the ith
component of the denominator in (7.27) is less than safe_min /u, where safe_min
is the smallest number such that 1/safe_min does not overflow, then they add
(n + 1)safe_min to the ith components of the numerator and denominator. A
more sophisticated strategy is advocated for sparse problems by Arioli, Demmel,

7.7 PracTIiICAL ERROR BOUNDS 131

and Duff [30, 1989]. They suggest modifying the formula (7.27) for WAy b) by
replacing |b;| in the denominator by || A(,:)|1||Z]|cc When the ith denominator is
very small. See [30, 1989] for details and justification of this strategy.

Turning to the forward error, one approach is to evaluate the forward error
bound from Theorem 7.2 or Theorem 7.4, with € equal to the corresponding back-
ward error. Because « in (7.10) is unknown, we should use the modified bound

A I(EZ] + £) lloo
121l o

If we have a particular F and f in mind for backward error reasons, then it is
natural to use them in (7.28). However, the size of the forward error bound varies
with F and f, so it is natural to ask which choice minimizes the bound.

< wg f(%) (7.28)

Lemma 7.9. The upper bound in (7.28) is at least as large as the upper bound in
Iz = Zlloo _ 1A~ |7l lloo
1Zlle — 7l

and is equal to it when E|T| + f is a multiple of |r|.

, (7.29)

Proof. First note that r = b — AZ implies |z — Z| < |A7!||r|, which implies
(7.29). Now, for z > 0,

a7l = 147 (52) < o 2,
with equality if z is a multiple of . Taking z = E|Z| + f gives

|47 Ir] < wg, ,@IAT(ELZ] + f),

with equality when E|Z| + f is a multiple of |r|. The truth of this statement is
preserved when co-norms are taken, so the result follows. 0

Since the bound (7.29) is obtained by taking absolute values in the equation

z — T = A7lr, it is clearly the smallest possible such bound subject to ignoring

signs in A~! and r. It is reasonable to ask why we do not take |A717||o/||Zloo

as our error bound. (Theoretically it is an exact bound!) One reason is that we

cannot compute 7 or |47 !r||» exactly. In place of r we compute 7 = fI(b — AZ),
and

r=r+dr, |Ar| < 7,41 (l4]1Z] + 18])- (7.30)

Therefore a strict bound, and one that should be used in practice in place of (7.29),

is
lz — Zlloo AT + Vo4 1 (IAIIZ] + 16]) llo
I1Zllo ~ 1Z]loo

Given an LU factorization of A this bound can be cheaply estimated without
computing A~! (see Chapter 15), and this is done by LAPACK’s xyyRFS routines.
Note also that if we did compute A~!r then we might as well apply a step of
iterative refinement, which could well provide a more stable and accurate solution
(see Chapter 12).

The LAPACK linear equation solvers estimate only one condition number: the
standard condition number x;(A) (or, rather, its reciprocal, referred to as rcond),
which is returned by the xyyCON routines.

(7.31)

132 PERTURBATION THEORY FOR LINEAR SYSTEMS

7.8. Perturbation Theory by Calculus

The perturbation results in this book are all derived algebraically, without any use
of derivatives. Calculus can also be used to derive perturbation bounds, often in
a straightforward fashion.

As a simple example, consider a linear system A(t)z(t) = b(t), where A(t) €
R™™ and z(t), b(t) € R™ are assumed to be continuously differentiable functions
of t. Differentiating gives

A(t)z(t) + A(t)z(t) = b(t),
or, dropping the ¢ arguments,
i =—-A" Az + A7%.

Taking norms, we obtain

B ey g+ a2 — gy <w+ l) (7.52)

flzll = (]l Al Al

This bound shows that x(A) is a key quantity in measuring the sensitivity of a
linear system. A componentwise bound could have been obtained just as easily.

To convert the bound (7.32) to the more standard form of perturbation bound
we can choose A(t) = A+tE, b(t) = b+ tf and write z(e) = z(0) + ex(0) + O(€?),
which leads to a first-order version of the bound (7.4).

The calculus technique is a useful addition to the armoury of the error analyst
(it is used by Golub and Van Loan [509, 1996], for example), but the algebraic
approach is preferable for deriving rigorous perturbation bounds of the standard
forms.

7.9. Notes and References

This chapter draws on the survey paper Higham [604, 1994].

Theorem 7.3 is due to Oettli and Prager (898, 1964], and predates the normwise
backward error result Theorem 7.1 of Rigal and Gaches [986, 1967]. In addition
to Theorem 7.1, Rigal and Gaches give a more general result based on norms of
blocks that includes Theorems 7.3 and 7.1 as special cases. Theorem 7.1 is also
obtained by Kovarik (749, 1976].

Theorems 7.1 and 7.3 both remain valid when A is rectangular. Componentwise
backward error for rectangular A was considered by Oettli, Prager, and Wilkin-
son (899, 1965), but their results are subsumed by those of Oettli and Prager (898,
1964] and Rigal and Gaches [986, 1967].

For a linear system Az = b subject to componentwise perturbations, Oet-
tli [897, 1965] shows how linear programming can be used to obtain bounds on
the components of £ when all solutions of the perturbed system lie in the same
orthant. Cope and Rust [271, 1979] extend this approach by showing, in general,
how to bound all the solutions that lie in a given orthant. This type of analy-
sis can also be found in the book by Kuperman (758, 1971], which includes an
independent derivation of Theorem 7.3. See also Hartfiel [550, 1980].

7.9 NOTES AND REFERENCES 133

Theorem 7.4 is a straightforward generalization of a result of Skeel [1040, 1979,
Thms. 2.1 and 2.2]. It is clear from Bauer’s comments in [91, 1966] that the bound
(7.10), with E = |A| and f = |b|, was known to him, though he does not state the
bound. This is the earliest reference we know in which componentwise analysis is
used to derive forward perturbation bounds.

Theorem 7.8 is from Bauer [90, 1963]. Bauer actually states that equality
holds in (7.24) for any A, but his proof of equality is valid only when |A~!||A| and
|A||A~!| have positive Perron vectors. Businger [187, 1968] proves that a sufficient
condition for the irreducibility condition of Theorem 7.8 to hold (which, of course,
implies the positivity of the Perron vectors) is that there do not exist permutations
P and @ such that PAQ is in block triangular form.

Theorem 7.7 is from Stewart and Sun [1083, 1990, Thm. 4.3.5].

Further results on scaling to minimize the condition number x(A) are given by
Forsythe and Straus [432, 1955], Bauer [92, 1969], Golub and Varah [504, 1974],
McCarthy and Strang [832, 1974], Shapiro [1033, 1982], [1034, 1985], [1035, 1991],
and Watson [1209, 1991].

Chan and Foulser [213, 1988] introduce the idea of “effective conditioning” for
linear systems, which takes into account the projections of b onto the range space
of A. See Problem 7.5, and for an application to partial differential equations see
Christiansen and Hansen [234, 1994].

For an example of how definitions of numerical stability for linear equation
solvers can be extended to incorporate structure in the problem, see Bunch [179,
1987].

An interesting application of linear system perturbation analysis is to Markov
chains. A discrete-time Markov chain can be represented by a square matrix P,
where p;; is the probability of a transition from state i to state j. Since state 4
must lead to some other state, Zj p;; = 1, and these conditions can be written in
matrix—vector form as

Pe=ce. (7.33)

A nonnegative matrix satisfying (7.33) is called a stochastic matrix. The initial
state of the Markov chain can be defined by a vector zT, where z; denotes the
probability that the ith state of the chain is occupied. Then the state of the chain
at the next time unit is given by 27 P. The steady state or stationary vector of
the chain is given by
T = lim TPk
k—o0

An important question is the sensitivity of the individual components of the steady-
state vector to perturbations in P. This is investigated, for example, by Ipsen
and Meyer [665, 1994], who measure the perturbation matrix normwise, and by
O’Cinneide [896, 1993], who measures the perturbation matrix componentwise.
For a matrix-oriented development of Markov chain theory see Berman and Plem-
mons [106, 1994).

It is possible to develop probabilistic perturbation theory for linear systems and
other problems by making assumptions about the statistical distribution of the
perturbations. We do not consider this approach here (though see Problem 7.14),
but refer the interested reader to the papers by Fletcher [416, 1985)], Stewart [1072,
1990], and Weiss, Wasilkowski, Wozniakowski, and Shub (1214, 1986).

134 PERTURBATION THEORY FOR LINEAR SYSTEMS

Problems
7.1. Under the conditions of Theorem 7.4, show that

|z —yl < eI —] ATHE)HATH(S + Elzl).
Hence derive a first-order bound for |z; — yi|/|:|-

7.2. Let Az = b, where A € R™*™. Show that for any vector y and any subordinate
matrix norm,
I~

Il le=ul
Al S Tl < ““arer

where the residual 7 = b — Ay. Interpret this result.
7.3. Prove (7.16) and deduce (7.15).

7.4. Let A € R™*™ be symmetric positive definite and let A = DHD, where
D= diag(ail,;/ %) (this is the scaling used in Corollary 7.6). Show that cond(H) <
Koo(H) < mcond(H).

7.5. (Chan and Foulser [213, 1988]) Let A € R™*™ have the SVD A = UXVT,
where X = diag(o;), o1 > --- > 0, and define the projection matrix Py := U, UT,
where Ug = U(:,n + 1 — k:n). Show that if Az = b and A(z + Az) = (b + Ab)
then

lAzlz _ oneroi bl A

< , k=1:n.
llzl2 on ||Pebll2 |lB]l2
What is the interpretation of this result?
7.6. (a) For the choice of tolerances E = |Alee?, f = |b|, corresponding to a

row-wise backward error, show that

ll|1
% loo

cond(A) < condg,s(A,z) < 2cond(A)

(b) For E = eeT|A| and f = ||b||1e, corresponding to a columnwise backward
error, show that

| Al 1l

_ Allz
ll]loo

< condg f(4,z) < 2[|A7 |0 Tz

7.7. Show that

2w, 4,5 (¥)
[AL 6]
“atm®) < Clael) S 75 oy

204 b(y)
y) Snaly) £ —=2—
TIA,b() A,0) 1= nA’b(y)

7.8. Let A € R™*™ and b € R™. Show that the normwise backward error defined
in terms of a parameter § > 0 by

ne(y) := min{ [[AA, 0Abll|F : (4 + AA)y = b+ Ab)

PROBLEMS 135

is given by
1ey) = — A
VEE[yl3 +1

where r = b — Ay.
7.9. Let A € R™ ™ be nonsingular. A componentwise condition number for the
problem of computing ¢”z, where Az = b, can be defined by

|cTAz|

(A4 AA Azx) = b+ Ab,
Sy (At A+ A) = by

Xg, s (A,) = !%SUD{
A4 < B, |Abl < ef }.

Obtain an explicit formula for xp ;(4,z). Show that xg ;(A,z) > 1if E = |A|
or f = |b|. Derive the corresponding normwise condition number %5 7(A,2), in
which the constraints are ||AA|l2 < €||E||; and [|Ab]|2 < €]|f||2-

7.10. (Bauer [90, 1963]) Let A, B,C € R™*™. (a) Prove that if B and C have
positive elements then

. —1 -1 _
p, B | D1BD2| ool Dy " CD7 Moo = p(BC),

where D,, = {diag(d;) : d; > 0, i = 1: n}. (Hint: consider D; = diag(z;)~! and
D, = diag(Cz1), where z; > 0 is a right Perron vector of BC: BCz, = p(BC)z,.)
(b) Deduce that if |A| and |A~!| have positive entries, then

. _ -1
o i, Re(DAD:) = pllAllA7I),

(c) Show that for any nonsingular A,

. -1
p, 0f Koo(D14D2) < p(|AllA77]).
(d) Strengthen (b) by showing that for any nonsingular A such that |A||A7?|
and |A7Y||A| are irreducible,
. _ -1
b, B Koo(D1AD2) = p(|A[IATY]).

(e) What can you deduce about minp, p,ep, k(D1AD,) for the 1- and 2-
norms?

7.11. (Bauer (91, 1966, p. 413], Rohn [989, 1989]) We can modify the definition
of pg(A) in (7.25) by measuring AX componentwise relative to X, giving
7

. |A.’L‘ij|
= —— <
we(A) 511_1}(1] sup{ rr%%x o] |AA| < eE}

(where X = A=! and X + AX = (A+ AA)~!). Show that
(IA~YEIATH)

pp(4) = ml‘;LX T;l)”—”

136 PERTURBATION THEORY FOR LINEAR SYSTEMS

7.12. Let A € R™*™ be symmetric and let y be an approximate solution to Az = b.
If y has a small backward error, so that y solves a nearby system, does it follow
that y solves a nearby symmetric system? This problem answers the question for
both the normwise and componentwise relative backward errors.

(a) (Bunch, Demmel, and Van Loan [180, 1989]) Show that if (A + G)y = b
then there exists H = H7T such that (A + H)y = b with ||H||2 < ||G|l2 and
IH|lF < V2||G||F. (This result does not require A = AT)

(b) (Smoktunowicz [1053, 1995]) Show that if A is symmetric and diagonally
dominant and (4 + G)y = b with |G| < €|4|, then there exists H = HT such that
(A+ H)y = b with |H| < 3¢|A|. (For a general symmetric A there may not exist
such an H, as is easily shown by a 2 x 2 example [574, 1992].)

(¢) (Smoktunowicz [1053, 1995]) Show that if A is symmetric positive definite
and (A+G)y = b with |G| < ¢|A4| then there exists H = H7 such that (A+H)y = b
with |H| < (2n — 1)e|A|.

7.13. Suppose that A € R**™ has w; nonzeros in its ith row, i = 1:n. Show that
the inequality (7.31) can be replaced by

Iz =2l _ IATI(IF + LN + [6])) lloo
[Zllo ~ 1210

R

where I' = diag(v,,,,;). This bound is potentially much smaller than (7.31) for
large, sparse matrices.

7.14. (D. J. Higham, after Fletcher [416, 1985]) Suppose the nonsingular, square
matrix A is perturbed to A+ AA and b to b+ Ab. Then, to first order, the solution
of Az = b is perturbed to z + Az, where

Az = —A"'AAz + A7 Ab.
Suppose that the perturbations have the form
Aay; = eizei;, Ab = 6if;,

where the ¢; and §; are independent random variables, each having zero mean
and variance o2. (As usual, the matrix E and vector f represent fixed tolerances.)
Let £ denote the expected value.

(a) Show that
E(Az]|3) = o®|| [A[E][a] + [A71)[f] Il
where square brackets denote the operation of elementwise squaring: [B);; = bfj.

(b) Hence explain why
1/2

(HATME] (=] + (A7)

llll2

condexp(A4,z) :=

may be regarded as an “expected condition number” for the linear system Az = b.

(c) For the case where e;; = ||A||2 and f; = ||b]|2, compare condexp(4, z) with
the “worst-case” condition number k4 4(A,z) for the 2-norm.

PROBLEMS 137

7.15. (Horn and Johnson [637, 1gg1, p. 331]) Prove that for any nonsingular
AcR® ><'rr.7

p, it ra(D1ADz) > || Ao AT,
where o is the Hadamard product (A o B = (a;;b;;)) and D, is defined as in
Problem 7.10. (Hint: use the inequality |4 o Bl < ||A||2]|Bl|2-) Discuss the
attainability of this bound.

Chapter 8
Triangular Systems

In the end there is left the coefficient of one unknown and the constant term.
An elimination between this equation and

one from the previous set that contains two unknowns

yields an equation with the coefficient of

another unknown and another constant term, etc.

The quotient of the constant term by the unknown

yields the value of the unknown in each case.

— JOHN V. ATANASOFF, Computing Machine for the Solution of
Large Systems of Linear Algebraic Equations (1940)

The solutions of triangular systems are usually computed to high accuracy.
This fact ... cannot be proved in general, for counter examples exist.
However, it is true of many special kinds of triangular matrices and

the phenomenon has been observed in many others.

The practical consequences of this fact cannot be over-emphasized.

— G. W. STEWART, Introduction to Matrix Computations (1973)

In practice one almost invariably finds that

if L is ill-conditioned, so that ||L||||L™"]| > 1,

then the computed solution of Lz = b (or the computed inverse)
is far more accurate than [standard norm bounds] would suggest.

— J. H. WILKINSON, Rounding Errors in Algebraic Processes (1963)

139

140 TRIANGULAR SYSTEMS

Triangular systems play a fundamental role in matrix computations. Many meth-
ods are built on the idea of reducing a problem to the solution of one or more tri-
angular systems, including virtually all direct methods for solving linear systems.
On serial computers triangular systems are universally solved by the standard back
and forward substitution algorithms. For parallel computation there are several
alternative methods, one of which we analyse in §8.4.

Backward error analysis for the substitution algorithms is straightforward and
the conclusion is well known: the algorithms are extremely stable. The behaviour
of the forward error, however, is intriguing, because the forward error is often
surprisingly small—much smaller than we would predict from the normwise con-
dition number &, or, sometimes, even the componentwise condition number cond.
The quotes from Stewart and Wilkinson at the start of this chapter emphasize
the high accuracy that is frequently observed in practice. The analysis we give
in this chapter provides a partial explanation for the observed accuracy of the
substitution algorithms. In particular, it reveals three important but nonobvious
properties:

e the accuracy of the computed solution from substitution depends strongly
on the right-hand side;

e a triangular matrix may be much more or less ill conditioned than its trans-
pose; and

e the use of pivoting in LU, QR, and Cholesky factorizations can greatly im-
prove the conditioning of a resulting triangular system.

As well as deriving backward and forward error bounds, we show how to com-
pute upper and lower bounds for the inverse of a triangular matrix.

8.1. Backward Error Analysis

Recall that for an upper triangular matrix U € R™"*™ the system Uz = b can be
solved using the formula z; = (bi—zyﬂ. +1 %i;T;)/uii, which yields the components
of z in order from last to first.

Algorithm 8.1 (back substitution). Given a nonsingular upper triangular matrix
U € R™*" this algorithm solves the system Uz = b. '

Tn = bn/unn

fori=n-1-1:1
s = bi
forj=i+1:n

§ =8 — UijTj

end
z; = s/uy

end

Cost: n? flops.

8.1 BACKWARD ERROR ANALYSIS 141

We will not state the analogous algorithm for solving a lower triangular system,
forward substitution. All the results below for back substitution have obvious
analogues for forward substitution. Throughout this chapter T' denotes a matrix
that can be upper or lower triangular.

To analyse the errors in substitution we need the following lemma.

Lemma 8.2. Lety = (c— f;ll a;b;)/br be evaluated in floating point arithmetic
according to

s=c

fori=1:k—-1
s=s8—a;b;

end

y =s/bx

Then the computed § satisfies

k-1
k(1 +6c) = c— D asbi(1+6s), (8.1)
i=1

where 0;] < «; = tu/(1 - iu).

Proof. Analysis very similar to that leading to (3.2) shows that §:= fl(c —
Zf;f a;b;) satisfies

k—1
S=c(l+6)...(1+8-1)— Y abi(1+e)(1+6)...(1+ &),

i=1

where |e;|, |6:| < u. The final division yields, using (2.5), ¥ = fI(5/bx) = s/ (bx(1+
%)), |0k| < u, so that, after dividing through by (1 +61)... (1 + 6k—1), we have
~ 1 + (5k oy 1+ €;

b —c- Y ab .
ky(1+61)...(1+5k_1) ¢ ;a (1-{-61)...(1—}-61;_1)

The result is obtained on invoking Lemma 3.1. O

Two remarks are in order. First, we chose the particular form of (8.1), in which
¢ is not perturbed, in order to obtain a backward error result for Uz = b in which
b is not perturbed. Second, we carefully kept track of the terms 1+ 9; in the proof,
so as to obtain the best possible constants. Direct application of the lemma to
Algorithm 8.1 yields a backward error result.

Theorem 8.3. The computed solution T from Algorithm 8.1 satisfies

U+ AV =b, |dug| < mmsralih =00 g
Viejiluisl, i F

Theorem 8.3 holds only for the particular ordering of arithmetic operations
used in Algorithm 8.1. A result that holds for any ordering is a consequence of
the next lemma.

142 TRIANGULAR SYSTEMS

Lemma 84. Ify = (c— Zf:—ll aibi)/ bk is evaluated in floating point arithmetic,
then, no matter what the order of evaluation,

x

-1
b1 +09) = c— 5 aibi(1 + 6,
1

o
1

where |0,(:)| < 7k for alli. If by = 1, so that there is no division, then |9,(:)| < Yot
for alli.

Proof. The result is not hard to see after a little thought, but a formal proof
is tedious to write down. Note that the ordering used in Lemma 8.2 is the one
for which this lemma is least obvious! The last part of the lemma is useful when
analysing unit lower triangular systems, and in various other contexts. O

Theorem 8.5. Let the triangular system Tz = b, where T € R™*™ is nonsingular,
be solved by substitution, with any ordering. Then the computed solution T satisfies

(T+AT)z=b |AT|<~,|T|. O

In technical terms, this result says that T has a tiny componentwise relative
backward error. In other words, the backward error is about as small as we could
possibly hope.

In most of the remaining error analyses in this book, we will derive results
that, like the one in Theorem 8.5, do not depend on the ordering of the arithmetic
operations. Results of this type are more general, usually no less informative, and
easier to derive, than ones that depend on the ordering. However, it is important
to realise that the actual error does depend on the ordering, possibly strongly so
for certain data. This point is clear from Chapter 4 on summation.

8.2. Forward Error Analysis

From Theorems 8.5 and 7.4 there follows the forward error bound

e &l _ cond(T,)y,
Tl = 1= condT),’

where .
cond(T,z) = W, cond(T) = || IT7' [T llco-
[1€loo

This bound can, of course, be arbitrarily smaller than the corresponding bound
involving 4o (T) = ||T|lool|T "} |lco, for the reasons explained in Chapter 7. For
further insight, note that, in terms of the traditional condition number, «(T), ill
conditioning of a triangular matrix stems from two possible sources: variation in
the size of the diagonal elements and rows with off-diagonal elements which are
large relative to the diagonal elements. Significantly, because of its row scaling
invariance, cond(T, z) is susceptible only to the second source.

8.2 FORWARD ERROR ANALYSIS 143

Despite its pleasing properties, cond(T,z) can be arbitrarily large. This is
illustrated by the upper triangular matrix

L, i=y,

Ul) =), wi={L, 123 53)
for which) o
—1 _ ’ o 1= .7:

(U@™),; = { a(l+a)i=i"l j>i (84)

We have cond(U(a), e) = cond(U(a)) ~ 2a™~! as @ — oo. Therefore we cannot
assert that all triangular systems are solved to high accuracy. Nevertheless, for
any T there is always at least one system for which high accuracy is obtained: the
system Tz = e; if T is upper triangular, or Tz = e, if T is lower triangular. In
both cases cond(T,z) = 1, and the solution comprises the computation of just a
single scalar reciprocal.

To gain further insight we consider special classes of triangular matrices, be-
ginning with one produced by certain standard factorizations with pivoting. In all
the results below, the triangular matrices are assumed to be n xn and nonsingular,
and T is the computed solution from substitution.

Lemma 8.6. Suppose the upper triangular matriz U € R™*™ satisfies
[uis| > |uij| for all j > 4. (8.5)

Then the unit upper triangular matriz W = |U™||U| satisfies w;; < 297 for all
j > 1, and hence cond(U) < 2™ — 1.

Proof. We can write W = |V~!||V| where V = D~'U and D = diag(u;).
The matrix V is unit upper triangular with |v;;| < 1, and it is easy to show that
|(V=1)i;| < 297 for j > i. Thus, for j > 1,

J j
Wij = Zl(v—l)ikHvkjl <1+ Z ok—i-1_ 1 _9i~i
k=i k=i+1

Theorem 8.7. Under the conditions of Lemma 8.6, the computed solution T to
Uxz = b obtained by substitution satisfies

|z; —) < 2n 7y x§1§3<|§?]|, i=1:n.
Proof. From Theorem 8.5 we have
|z — 2| = [UAUZ| < 7,|UH[U3].
Using Lemma 8.6 we obtain

n n
o = Bil < ¥ Y wil@5] < vumax(F5] Y27 < 2V Ny, max|E;) O
321 jzi

i=i j=i

144 TRIANGULAR SYSTEMS

Lemma 8.6 shows that for U satisfying (8.5), cond(U) is bounded for fixed n,
no matter how large x(U). The bounds for |z; — Zi| in Theorem 8.7, although
large if n is large and i is small, decay exponentially with increasing i—thus, later
components of z are always computed to high accuracy relative to the elements
already computed.

Analogues of Lemma 8.6 and Theorem 8.7 hold for lower triangular L satisfying

Il”l >]lij] for all 7 <t (86)
Note, however, that if the upper triangular matrix T satisfies (8.5) then T'T does

not necessarily satisfy (8.6). In fact, cond(T'T) can be arbitrarily large, as shown
by the example

1
T=10
0

O =
= o O

2
cond(T) =5, cond(TT)=1+ o

An important conclusion is that a triangular system Tz = b can be much more or
less ill conditioned than the system T7y = c, even if T satisfies (8.5).

Lemma 8.6 and Theorem 8.7, or their lower triangular analogues, are applicable
to

e the lower triangular matrices from Gaussian elimination with partial pivot-
ing, rook pivoting, and complete pivoting;

e the upper triangular matrices from Gaussian elimination with rook pivoting
and complete pivoting;

e the upper triangular matrices from the Cholesky and QR factorizations with
complete pivoting and column pivoting, respectively.

A more specialized class of upper triangular matrices than those satisfying (8.5)
is those that are row diagonally dominant, that is, U € R™*™ satisfying

n
uil < D fugl, i=Llin-L.
j=it+1

Such matrices arise as the upper triangular matrices in the L U factorization with-
out pivoting of row diagonally dominant matrices, and for them a much stronger
result than Lemma 8.6 holds.

Lemma 8.8. If the upper triangular matriz U € R®*™ is row diagonally dominant

then (|U‘1||U|)ij <i+j—1 andcond(U) < 2n—1.

Proof. The proof follows that of Lemma 8.6, with D and V as defined there.
Using the fact that U, and hence V, is row diagonally dominant we find that both

8.2 FORWARD ERROR ANALYSIS 145

V and V1! have elements bounded in magnitude by 1. The bound |w;;| < i+j-1,
where W = |U7Y||U|, is then immediate. Finally,
Wlleo = Il Wlelloo = 1 IVHV]elloo
<Nvee ... 21
=2n—1. O

It follows from Lemma 8.8 and (8.2) that row diagonally dominant upper tri-
angular systems are solved to essentially perfect normwise relative accuracy.
Next, we consider triangular T satisfying

tii > 0, tij <0 for all 4 ;é j

It is easy to see that such a matrix has an inverse with nonnegative elements,
and hence is an M-matrix (for definitions of an M-matrix see the Notes and
References). Associated with any square matrix A is the comparison matriz:

M) = (), g = {2 &)

For any nonsingular triangular T', M (T) is an M-matrix. Furthermore, it is easy
to show that |[77!| < M(T)~! (see Theorem 8.12).

The following result shows that among all matrices R such that |R| = |T],
R = M(T) is the one that maximizes cond(R,z).

Lemma 8.9. For any triangular T,
cond(T, z) < cond(M(T),z) = || (2M ()" diag(ltal) = T) o] oo /Iloo-

Proof. The inequality follows from [T~!| < M(T)~!, together with |T'| =
|M(T)|. Since M(T)~! > 0, we have

IM(T)~H|M(T)| = M(T)~" (2diag([tal) — M (T))
2M(T) ™" diag(|tul) — 1,

which yields the equality. 0
If T = M(T) has unit diagonal then, using Lemma 8.9,

~(T)
IT oo

This means, for example, that the system U(1)z = b (see (8.3)), where z = e, is
about as ill conditioned with respect to componentwise relative perturbations in
U(1) as it is with respect to normwise perturbations in U(1).

The next result gives a forward error bound for substitution that is proved
directly, without reference to the backward error result Theorem 8.5 (indeed, it
cannot be obtained from that result!). The bound can be very weak, because
|M(T)71|| can be arbitrarily larger than {|T~!|| (see Problem 8.2), but it yields a
pleasing bound in the special case described in the corollary.

cond(T) = cond(T,e) = 12T — I||eo = 2

146 TRIANGULAR SYSTEMS

Theorem 8.10. The computed solution T obtained from substitution applied to
the triangular system Tx = b of order n satisfies

|z~ 2] < (R +n+Du+ Ow?))M(T)™1|b].

Proof. Without loss of generality, suppose T = L is lower triangular. The
proof is by induction on the components of z. The result clearly holds for the first
component. Assume that it holds for the first n — 1 components. An analogue of
Lemma 8.4 shows that

lunEn = b (1+650) — Z s 5(1+ 051,),

where IG,(QII < 4Yn41 for all 5. Subtracting from 2, = b, — Zr.l_l l

g=1 njLj EIVES

n—1 n—1
lbin(Tn — Zn) = _an‘ElO'Zl - Z Inj (xj —Z;)+ Z lnj:’fjev(:]ll’
j=1 j=1

so that
R S I J1+yn+lzl'f:;'] (89
p
Write
o[0] e)

Then the inductive assumption can be written as |Z(1:n — 1) — z(l:n — 1)| <
n—1 M7} |b(1:n — 1), which implies [Z(1:n — 1) < (un_1 +)MF}b(1:n — 1)].
Hence (8.8) gives
|Zn = Zn| < Yni 1M lbn] + tn—1mpam® M3 b(1in — 1))
+ Yna (no1 + Dmam” My [b(1in — 1)]
< (l-Ln—l + Ynt1(Bn-1 + 1)) (M(L)‘llbl)n-

We have the recurrence ptx = (1 + Yoy)itk—1 + Ves1 < (14 Yng)itk—1 + Tns1s
Lo = u, which yields

n <A+ Vo) ut (T4 950)" - 1) < (®+n+Du+0@?*. O

Corollary 8.11. The computed solution obtained from substitution applied to the
triangular system Tz = b of order n, where T = M(T) and b > 0, satisfies

lz -2 < ((n* +n+Du+O@?))|z[. O

8.3 BOUNDS FOR THE INVERSE 147

Corollary 8.11 shows that, when T is an M-matrix and the right-hand side is
nonnegative, the solution is obtained to high relative accuracy in every component.
The reason for the high accuracy is that for such a system there are no subtractions
of like-signed numbers, so that each z; is computed as a sum of nonnegative
quantities. A consequence of the corollary is that the inverse of a triangular M-
matrix can be computed to high relative accuracy.

Triangular systems of the type in Corollary 8.11 occur in linear equations
obtained by discretizing certain elliptic partial differential equations, such as the
Poisson equation on a rectangle, with zero boundary conditions and a positive
forcing function: these problems yield symmetric positive definite M-matrices,
and the LU factors of an M-matrix are themselves M-matrices. Such systems also
occur when evaluating the bounds of the next section.

8.3. Bounds for the Inverse

In this section we describe bounds for the inverse of a triangular matrix and show
how they can be used to bound condition numbers. All the bounds in this section
have the property that they depend only on the absolute values of the elements of
the matrix. The norm estimation methods of Chapter 15, on the other hand, do
take account of the signs of the elements.

The bounds are all based on the following theorem, whose easy proof we omit.

Theorem 8.12. If U is a nonsingular upper triangular matriz then
U <MU)T WU < Z(U) T,
where the upper triangular matrices W(U) and Z(U) are defined as follows:

{luﬁl, i=3j,
’LUij =

—maxX;y1<k<n |Wikl, @<,

e i=id
5 — . .
_alB7 1<,

where @ = miny |ukk|, B = max;<; |ui;|/|ui). O

Theorem 8.12 is a special case of results in the theory of M-matrices. For
more general results couched in terms of matrix minorants and diagonal dom-
inance, respectively, see Dahlquist [288, 1983] and Varga [1190, 1976]; see also
Householder (644, 1964, Exercise 15, p. 58].

An obvious implication of the theorem is that for any vector z and any absolute
norm

HU Ml < I M@) 7 el | < IW @) 7Hel | < 1 Z0) el .

By taking z = |Ule, z = |U||z|, and z = e, respectively, we obtain upper bounds
for cond(U), cond(U, z), and koo (U). The cost of computing these bounds is just
the cost of solving a triangular system with coefficient matrix M(U), W (U), or

148 TRIANGULAR SYSTEMS

Z(U), which is easily seen to be O(n?), O(n), and O(1) flops, respectively. By
comparison, computing any of these condition numbers exactly costs O(n®) flops.

As an example, here is how to compute an upper bound for |77 }||c in n?
flops.

Algorithm 8.13. Given a nonsingular upper triangular matrix U € R»*", this
algorithm computes ¢ = |M(U) oo > IU|oo-

Yn = l/lunnl
fori=n—-1.-1:1
s=1
forj=i+1:n
s =5+ |uijly;
end
Yi = yi/|uisl
end
#= lylloo

How good are these upper bounds? We know from Problem 8.2 that the ratio
|1M(T)=|/IT~| can be arbitrarily large, therefore any of the upper bounds can
be arbitrarily poor. However, with suitable assumptions on 7', more can be said.

It is easy to show that if T is bidiagonal then |T~!| = M (T)~!. Since a bidiag-
onal system can be solved in O(n) flops, it follows that the three condition numbers
of interest can each be computed exactly in O(n) flops when T is bidiagonal.

As in the previous section, triangular matrices that result from a pivoting
strategy also lead to a special result.

Theorem 8.14. Suppose the upper triangular matriz U € R™*™ satisfies
|uii| > |u,-j| fOT G,ll] > 1.
Then, for the 1-, 2-, and co-norms,

1
mini Iu,;,;l

2n—1

mini {u,;,;{ ’

(8.9)

U < IM@) M < W @) < 120) 7 <

Proof. The left-hand inequality is trivial. The right-hand inequality follows
from the expression [|Z(U) ! |l1,00 = (8 +1)"!/a (see Problem 8.5), together

with [|All2 < V/[[All1[[Aflc. O

The inequalities from the second onwards in (8.9) are all equalities for the
matrix with us; = 1 and u;; = —1 (§ > 4). The question arises of whether equality
is possible for the upper triangular matrices arising from QR factorization with
column pivoting, which satisfy the inequalities (see Problem 19.5)

J
uhe >y u, j=k+lin, k=1ln (8.10)
i=k

8.4 A PARALLEL FAN-IN ALGORITHM 149

That equality is possible is shown by the parametrized matrix of Kahan [687, 1966]

"1l — —c —c’
1 -—c —c
Un(9) = diag(1,s,...,s"") o |, (8.11)
. —c
1

where ¢ = cos(6), s = sin(#). It is easily verified that U, (6) satisfies the inequalities
(8.10)—as equalities, in fact. From (8.4), U,(0)~! = (B;;) is given by

1—j .
s s 1=,
ﬂij={

s'7ie(c+ 1), i<

Thus as 6 — 0, s"~'U,(6)"' — [0,0,...,0,z], where z = [2"=2,27=1 ... 1,1]T,

and hence, for small 6,
n—1

_ 2
[Un(6) 12,00

|tnn
It can also be verified that the matrix U, (6) = (u:;) defined by @;; = (—1)7%|u;]

satisfies, for small 8, ||U,(8)||~} = 1/|unxs|, while |M(TU.(0)|7! =~ 2"!/|unn|-
Hence the upper bounds for ||[U~}|| can all be too big by a factor of order 2",

8.4. A Parallel Fan-In Algorithm

Substitution is not the only way to solve a triangular system. In this section we
describe a different approach that has been suggested for parallel computation.

Any lower triangular matrix L € R™*™ can be factorized L = L,L,...L,,
where Lj differs from the identity matrix only in the kth column:

-Ik—l -
Lk
Ly = leyrp 1 . (8.12)

A Ink 1.
The solution to a linear system Lz = b may therefore be expressed as
z=L"1b=M,M,_,... Mb, (8.13)

where M; = L7'. When evaluated in the natural right-to-left order, this formula
yields a trivial variation of a column-oriented version of substitution.

The fan-in algorithm evaluates the product (8.13) in [log(n + 1)] steps by the
fan-in operation (which is the operation used in pairwise summation: see §4.1).
For example, for n = 7 the calculation is specified by

z = (M7 Ms)(MsMy)) (M3 My)(M3b)),

150 TRIANGULAR SYSTEMS

where all the products appearing within a particular size of parenthesis can be
evaluated in parallel. In general, the evaluation can be expressed as a binary tree
of depth [log(n + 1)] + 1, with products M;b and M;M;_; (i = 3,5,...,2[(n —
1)/2] + 1) at the top level and a single product yielding = at the bottom level.
This algorithm was proposed and analysed by Sameh and Brent (1008, 1977], who
show that it can be implemented in 1log®n + O(logn) time steps on &n® +
O(n?) processors. The algorithm requires about n3/10 operations and thus is of
no interest for serial computation. Some pertinent comments on the practical
significance of logn terms in complexity results are given by Edelman [377, 1993].

To derive an error bound while avoiding complicated notation that obscures
the simplicity of the analysis, we take n = 7. The result we obtain is easily seen to
be valid for all n. We will not be concerned with the precise values of constants, so
we write c,, for a constant depending on n. We assume that the inverses M; = L 1
are formed exactly, because the errors in forming them affect only the constants.
From the error analysis of matrix-vector and matrix-matrix multiplication (§3.5),
we find that the computed solution Z satisfies

T = ((M7Ms + Are)(Ms My + Ass) + Aresa) (M3 Ma + Agz) (M + A1)b), (8.14)
where
|4:i-1] < cpu|Mi|| M| + O(u?), i=35,7,
|Az654| < cnu(|M7Ms||Ms M| + | Mg MeMs My|) + O(u?),
|As2| < cau(|Mz|| M| + | M3 Ma|) + O(u?),
|41 < cpu| M| + O(u?).

Premultiplying (8.14) on the left by L, we find that the residual r = LZ — b isa
sum of terms of the form

L(M7 ‘. Mj+1)Aj,...,kMk—1 e Mlb = L1 e LjAj’,,.ykLk AN L7.’E.

All these terms share the same upper bound, which we derive for just one of them.
For j = 5, k = 4 we have

|Ly...LsAsqLy... L7z| < cpu|Ly ... Ls||Ms||Ma|| Ly . . . Lrz| + O(u?)
= cpu|L; ... Ls||L¢L7L™ L, ... L4
x |LsLgL7L™*L1LyL3||Ly . .. Lyz| 4+ O(u?)
< cpu|L||[L7H| LI L7 | L] |z] 4+ O(u?),

where we have used the property that, for any L € R®*", |L;|...|L,| = |L|. The
overall residual bound is therefore of the form

b - L&] < dulL|| LY ILIIL Y| Lzl + O(u?), (8.15)
or, on taking norms,
16— Laloo < duull LI~ LIL YL llel [l + Oa2). (8.16)

By considering the binary tree associated with the fan-in algorithm, and using
the fact that the matrices at the ith level of the tree have at most 2¢~! nontrivial

8.5 NOTES AND REFERENCES 151

columns, it is easy to see that we can take d, = anlogn, where a is a constant of
order 1.

It is not hard to find numerical examples where the bound in (8.16) is ap-
proximately attained (for d, = 1) and greatly exceeds u||L||co||Z]|oo, which is the
magnitude required for normwise backward stability. One way to construct such
examples is to use direct search (see Chapter 26).

The key fact revealed by (8.16) is that the fan-in algorithm is only condition-
ally stable. In particular, the algorithm is normwise backward stable if L is well
conditioned. A special case in which (8.15) simplifies is when L is an M-matrix
and b > 0: Problem 8.4 shows that in this case [L~!||L||z| < (2n — 1)|z|, so (8.15)
yields |[LZ—b| < (2n—1)2d,u|L||z|+ O(u?), and we have componentwise backward
stability (to first order).

We can obtain from (8.16) the result

(L+ALZ =b, ||AL|oo < 0nUkoo(L)?||L]co + O(u?), (8.17)

which was proved by Sameh and Brent [1008, 1977] (with a, = in%logn +
O(nlogn)). However, (8.17) is a much weaker bound than (8.15) and (8.16).
In particular, a diagonal scaling Lz = b — D,LD, - D5 ly = Dib (where Dj is
diagonal) leaves (8.15) (and, to a lesser extent, (8.16)) essentially unchanged, but
can change the bound (8.17) by an arbitrary amount.

A forward error bound can be obtained directly from (8.14). We find that

|z — 7| < diu|M7|| M| - .. |M||b] + O(u?)
= d,uM(L)7'|p| + O(u?), (8.18)

where M (L) is the comparison matrix (a bound of the same form as that in
Theorem 8.10 for substitution—see the Notes and References and Problem 8.10),
which can be weakened to

Iz = Z|loo

M) Tl oo
E

<e
(E1PS

= *n

+ O(u?). (8.19)

We also have the bound

AL IZDf floo
[G41P%

2 = Z[loo

< dnu
lzlloo

+O(u?), (8.20)

which is an immediate consequence of (8.15). Either bound in (8.19) and (8.20)
can be arbitrarily larger than the other, for fixed n. An example where (8.20) is
the better bound (for large n) is provided by the matrix with l;; = 1, for which
|L~||L| has maximum element 2 and M(L)~!|L| has maximum element 2"~!.

8.5. Notes and References

Section 8.2 is based on Higham [586, 198g]. Many of the results presented in §§8.2
and 8.3 have their origin in the work of Wilkinson. Indeed, these sections are
effectively a unification and extension of Wilkinson’s results in (1229, 1961], [1232,
1963), and [1233, 1965).

152 TRIANGULAR SYSTEMS

Classic references for Theorems 8.3 and 8.5 are Wilkinson {1229, 1961, p. 294],
(1232, 1963, pp. 100-102], Forsythe and Moler [431, 1967, §21], and Stewart [1065,
1973, pp. 150, 408-410].

Analogues of Theorem 8.7 and Corollary 8.11 for matrix inversion are proved
by Wilkinson in [1229, 1961, pp. 322-323], and Corollary 8.11 itself is proved in
(1233, 1965, pp. 250-251]). Lemma 8.8 appears to have first been obtained by
Pena (933, 1998], and it was also derived by Malyshev (811, 2000].

A matrix A € R™” is an M-matrix if a;; < 0 for all ¢ # j and all the
eigenvalues of A have nonnegative real part. This is one of many equivalent defi-
nitions [106, 1994, Chap. 6]. An M-matrix may be singular. A particularly useful
characterization of a nonsingular M-matrix is a nonsingular matrix A € R®*” for
which a;; < 0 for all i # j and A~! > 0. For more information on M-matrices see
Berman and Plemmons (106, 1994] and Horn and Johnson (637, 1991, §2.5].

A result of the form of Theorem 8.10 holds for any triangular system solver that
does not rely on algebraic cancellation—in particular, for the fan-in algorithm, as
already seen in (8.18). See Problem 8.10 for a more precise formulation of this
general result.

Stewart [1079, 1997] shows that cond(U) is small if the upper triangular ma-
trix U is rank-revealing in a certain sense, and he argues that the U produced
by pivoted LU, Cholesky, and QR factorizations tend to be rank-revealing. His
analysis provides further insight into why triangular systems are typically solved
to high accuracy in practice.

The bounds in §8.3 have been investigated by various authors. The unified pre-
sentation given here is based on Higham [582, 1987]. Karasalo 710, 1974] derives
an O(n) flops algorithm for computing || M (T)~!||r. Manteuffel [814, 1981] derives
the first two inequalities in Theorem 8.12, and Algorithm 8.13. A different deriva-
tion of the equations in Algorithm 8.13 is given by Jennings [674, 1982, §9]. The
formulae given in Problem 8.5 are derived directly as upper bounds for |77 !{|1,00
by Lemeire [781, 1975).

That ||B7!|| can be computed in O(n) flops when B is bidiagonal, by exploit-
ing the relation ||B™1||o = ||M(B)~'e|loo, was first pointed out by Higham [579,
1986]. Demmel and Kahan [329, 1990] derive an estimate for the smallest singular
value o, of a bidiagonal matrix B by using the inequality @ < omin(B) < V70,
where @ = min(||B}||22, |1B7}|)7!) They compute 7 in O(n) flops as

7 = min(||M (B) Ye|lz2, | M(B) Te|l).

Section 8.4 is adapted from Higham [605, 1995], in which error analysis is given
for several parallel methods for solving triangular systems.

The fan-in method is topical because the fan-in operation is a special case
of the parallel prefix operation and several fundamental computations in linear
algebra are amenable to a parallel prefix-based implementation, as discussed by
Demmel [315, 1992], 316, 1993]. (For a particularly clear explanation of the paral-
lel prefix operation see the textbook by Buchanan and Turner {171, 1992, §13.2].)
The important question of the stability of the parallel prefix implementation of
Sturm sequence evaluation for the symmetric tridiagonal eigenproblem is answered
by Mathias [822, 1995]. Mathias shows that for positive definite matrices the rel-
ative error in a computed minor can be as large as a multiple of A3, where A, is

PROBLEMS 153

the smallest eigenvalue of the matrix; the corresponding bound for serial evalua-
tion involves A,;!. The analogy with (8.20), where we also see a condition cubing
effect, is intriguing.

Higham and Pothen [622, 1994] analyse the stability of the “partitioned inverse
method” for parallel solution of sparse triangular systems with many right-hand
sides. This method has been studied by several authors in the 1990s; see Alvarado,
Pothen, and Schreiber [17, 1993] and the references therein. The idea of the
method is to factor a sparse triangular matrix L € R®*™ as L = L1L,...L, =
G1G3...Gn, where each G; is a product of consecutive L; terms and 1 < m < n,
with m as small as possible subject to the G; being sparse. Then the solution to
Lz = b is evaluated as

r=G;lG;l,...G,

where each Gi"1 is formed explicitly and the product is evaluated from right to
left. The advantage of this approach is that z can be computed in m serial steps
of parallel matrix—vector multiplication.

8.5.1. LAPACK

Computational routine xTRTRS solves a triangular system with multiple right-hand
sides; xTBTRS is an analogue for banded triangular matrices. There is no driver
routine for triangular systems.

Problems

Before you start an exercise session,
make sure you have a glass of water and
a mat or towel nearby.

— MARIE HELVIN, Model Tips for a Healthy Future (1994)

8.1. Show that under the no-guard-digit model (2.6), Lemma 8.2 remains true if
(8.1) is changed to

k—1
beg(1+6k) = c— > _ aibi(1+6ir2),

i=1
and that the corresponding modification of Theorem 8.5 has
(T+ATR =b, |AT] <3, |TI.
8.2. Show that for a triangular matrix T the ratio |M(T)~}||/||T~!| can be ar-
bitrarily large.

8.3. Suppose the unit upper triangular matrix U € R™*" satisfies |u;;| < 1 for j >
i. By using Theorem 8.10, show that the computed solution Z from substitution
on Uz = b satisfies

|zs — Z:] < 2°7H((n® + n + Du + O(?)) [bl|co-

Compare with the result of applying Theorem 8.7.

154 TRIANGULAR SYSTEMS

8.4. Let T € R™™™ be triangular and suppose T'= M(T) and Tz = b > 0. Show
that |T1|T||z| < (2n — 1)|z|, and hence that cond(T,z) < 2n — 1. This result
shows that a triangular M-matrix system with a nonnegative right-hand side is
very well conditioned with respect to componentwise relative perturbations, irre-
spective of the size of x(T) (and so leads to an alternative proof of Corollary 8.11).

8.5. Show that for a triangular T € R™*™, |Z(T)™| = (64 1)*"! /a for both the
1- and co-norms (@ and G are defined in Theorem 8.12).

8.6. Write detailed algorithms for efficiently computing the quantities
IMU) el loor 1W(U) 7 2] lloo-

8.7. Bounds from diagonal dominance. (a) Prove the following result (Ahlberg
and Nilson [9, 1963, Varah [1188, 1975)): if A € R™*™ (not necessarily triangular)
satisfies
o; = |a,~,~|—Z|aij|>0, i=1in
i
(that is, A is strictly diagonally dominant by rows), then
1
min; o;

4™ oo <

(b) Hence show that (Varga [1190, 1976]) if A € R™*™ satisfies

B = laisldi — Y lasjld; >0, i=1in,
Jj#i
for some positive diagonal matrix D = diag(d;) (that is, AD is strictly diagonally
dominant by rows), then
[Pl
rnini ,8—,’)

A7 oo <
(c) Use part (b) to provide another derivation of the upper bound ||M (T) el
2|77 leo-

8.8. (a) Let A € R™ ™ be nonsingular. For a given ¢ and j, determine, if possible,
@;; such that A + aije,-ef is singular. Where is the “best” place to perturb A to
make it singular?

(b) Let T = U(1) in (8.3), so that, for example,
1 -1 -1 -1

1 -1 -1
L= 1 -1
1

Show that T}, is made singular by subtracting 22~ ™ from a certain element of T,.

8.9. (Zha [1279, 1993]) Show that if c and s are nonnegative (with c® + s? = 1)
then the Kahan matrix U,(f) in (8.11) has s"~2y/1+ ¢ as its second smallest
singular value. (That there should be such an explicit formula is surprising; none
is known for the smallest singular value.)

PROBLEMS 155

8.10. Consider a method for solving triangular systems Tz = b that computes
x; = f;(T,b) where, for all i, f; is a multivariate rational function in which the
only divisions are by diagonal elements of L and such that when T' = M (T) and
b > 0 there are no subtractions in the evaluation of f;. Show that a bound holds
of the form in Theorem 8.10, namely, for T € R**",

Iz — 2] < (cau+ O(u?)) M(T)"[b]. (8.21)

Give an example of a triangular system solver for which (8.21) is not satisfied.

Chapter 9
LU Factorization and Linear Equations

It appears that Gauss and Doolittle applied the method only to symmetric equations.
More recent authors, for example, Aitken, Banachiewicz, Dwyer, and Crout ...
have emphasized the use of the method, or variations of it,

in connection with non-symmetric problems . ..

Banachiewicz ... saw the point ...

that the basic problem is really one of matrix factorization,

or "“decomposition” as he called it.

— PAUL S. DWYER, Linear Computations (1951)

Intolerable pivot-growth [with partial pivoting] is a phenomenon that happens
only to numerical analysts who are looking for that phenomenon.

— WILLIAM M. KAHAN, Numerical Linear Algebra (1966)

By 1949 the major components of the

Pilot ACE were complete and undergoing trials . ..

During 1951 a programme for solving simultaneous

linear algebraic equations was used for the first time.

26th June, 1951 was a landmark in the history of the machine,
for on that day it first rivalled alternative computing methods
by yielding by 3 p.m. the solution to

a set of 17 equations submitted the same morning.

— MICHAEL WOODGER, The History and Present Use of
Digital Computers at the National Physical Laboratory (1958).

T he closer one looks,

the more subtle and remarkable Gaussian elimination appears.
— LLOYD N. TREFETHEN, Three Mysteries of Gaussian Elimination (1985)

157

158 LU FACTORIZATION AND LINEAR EQUATIONS

9.1. Gaussian Elimination and Pivoting Strategies

We begin by giving a traditional description of Gaussian elimination (GE) for
solving a linear system Az = b, where A € R"*™ is nonsingular.

The strategy of GE is to reduce a problem we can’t solve (a full linear system)
to one that we can (a triangular system), using elementary row operations. There
are n — 1 stages, beginning with A() := A, b1 := b, and finishing with the upper
triangular system Az = (™),

At the kth stage we have converted the original system to Az = b(¥)| where

k k
ol
0 A

with A(lli) € R=1x(=1) ypper triangular. The purpose of the kth stage of the
elimination is to zero the elements below the diagonal in the kth column of A(),
This is accomplished by the operations

£f+l)=a§f)-—mka§£), i=k+1in, j=k+ Ln,

BT = B o b i = k4 1im,

where the multipliers m;, = a(k)/ag;), it = k+ 1:n. At the end of the (n — 1)st
stage we have the upper triangular system A(™z = ("), which is solved by back
substitution. For an n x n matrix, GE requires 2n3/3 flops.

There are two problems w1th the method as described. First, there is a break-
down with division by zero if al kk = 0. Second, if we are working in finite precision

and some multiplier m;, is large, then there is a possible loss of significance: in

the subtraction a(J) —-m,; kafc), low-order digits of a() could be lost. Losing these

digits could correspond to makmg a relatively large change to the original ma-
trix A. The simplest example of this phenomenon is for the matrix [; 1] here,
a§22) =1-1/¢, and fl(a22) = —1/€if € < u, which would be the exact answer if
we changed a2 from 1 to 0.

These observations motivate the strategy of partial pivoting. At the start of

the kth stage, the kth and rth rows are interchanged, where
|a I = max |a |

Partial pivoting ensures that the multipliers are nicely bounded:
‘mik|§1, i=k+1l:n.

A more expensive pivoting strategy, which interchanges both rows and columns,
is complete pivoting.

At the start of the kth stage, rows k and r and columns k and s are inter-
changed, where

(k)| .— o'
lars’] =, max la;;”].

Note that this requires O(n3) comparisons in total, compared with O(n?) for
partial pivoting. Because of the searching overhead, and because partial pivoting

9.1 GAUSSIAN ELIMINATION AND PIVOTING STRATEGIES 159

Figure 9.1. lilustration of how rook pivoting searches for the first pivot for a particular
6 x 6 matriz (with the positive integer entries shown). Each dot denotes a putative pivot
that is tested to see if it is the largest in magnitude in both its row and its column.

works so well, complete pivoting is used only in special situations (see the Notes
and References).

Also of interest, but much less well known, is the ook pivoting strategy, which
chooses at each stage a pivot intermediate in size between the pivots that would
be chosen by partial pivoting and complete pivoting. At the start of the kth stage,
rows k and r and columns k£ and s are interchanged, where

(k)| — (k) _ (k).
s’ = poax la;;"| = max |a,;’|
in other words, a pivot is chosen that is the largest in magnitude in both its column
(as for partial pivoting) and its row. The pivot search can be coded as follows:

Sp = k
forp=1,2,...
i 1 . n
rp = row index of first element of max. modulus among {a:s,_, }] 4
ifp>1and Ia'rp,sp_1| = Iarp_l,sp—1|
take ar,_,,s,_, as pivot, quit
end
— o An
sp = col. index of first element of max. modulus among {a,,;}7_x
if |ar,,s,| = |ar,,s,. | take ar _, as pivot, quit, end
end

The rook pivoting strategy takes its name from the fact that the search for a
pivot corresponds to the moves of a rook in chess; see Figure 9.1. Note that in
the pivot search, elements previously considered can be skipped; in the following
discussion we will assume that this refinement is incorporated, though it may not
be worthwhile in practice.

Clearly, the search for a pivot in rook pivoting involves at least twice as many
comparisons as for partial pivoting, and if the whole submatrix has to be searched
then the number of comparisons is the same as for complete pivoting. Foster [435,

1997, Thm. 5] shows that if the elements {az(.;)};"j:k are independent identically

160 LU FACTORIZATION AND LINEAR EQUATIONS

distributed random variables from any continuous probability distribution then
the expected number of comparisons in the pivot search for rook pivoting at stage
k is at most (n — k)e (where e = exp(1)). If this statistical assumption is satisfied
for each k then the overall number of comparisons is bounded by (n — 1)ne/2,
which is of the same order as for partial pivoting ((n —1)n/2 comparisons) and an
order of magnitude less than for complete pivoting (n3/3 + O(n/2) comparisons).
Numerical experiments show that the cost of rook pivoting is indeed usually a
small multiple of the cost of partial pivoting and significantly less than the cost
of complete pivoting (see Figure 9.3). However, rook pivoting can require O(n?)
comparisons, as illustrated by any matrix of the form, illustrated for n = 4,

6, 62
03 64
fs 66|’
67

for which n3/4 + O(n?) comparisons are required.

61] < [62] < --- <67l

9.2. LU Factorization

Much insight into GE is obtained by expressing it in matrix notation. We can
write

I
1
—Mgt1ke 1

AFED = pAp AR = . AR
~Mk+2,k .

——mn,k 1

The matrix My can be expressed compactly as My = I — mkez, where ey is the
kth unit vector and e?m,C = 0 for ¢ < k. To invert My, just flip the signs of the
multipliers: M ! = I + m,e¥. Overall,

My 1My g...MiA=A™ =. 1],
and so
A= MM M7LU
= (I +me])T +mged)...(I +m,_el_))U

n—1
(I + Z mieiT) U
i=1

i

9.2 LU FACTORIZATION 161

The conclusion is that GE computes an LU factorization of A: A = LU, where L
is unit lower triangular and U is upper triangular.
We introduce the shorthand notation Ax == A(1: k, 1: k).

Theorem 9.1. There exists a unique LU factorization of A € R™*™ if and only
if Ak is nonsingular for k = 1:n — 1. If Ag is singular for some 1 <k <n-—1
then the factorization may exist, but if so it is not unique.

Proof. Suppose Ag is nonsingular for k = 1:n — 1. The existence of an LU
factorization can be proved by examining the steps of GE, but a more elegant
proof, which also gives uniqueness, can be obtained by an inductive bordering
construction. Suppose Ax_; has the unique LU factorization Ax_1 = Lx_1Uk_1
(this supposition clearly holds for k — 1 = 1). We look for a factorization

Akt b | Lk Of1Ukor w |
O P i | W

The equations to be satisfied are Ly_iu = b, U,?_ll = ¢, and apx = Tu +
ukk. The matrices Lx—; and Uk_; are nonsingular, since 0 # det(Ax—;) =
det(Lk—1)det(Ux—1), so the equations have a unique solution, completing the in-
duction.

Weprove the converse, under the assumption that A is nonsingular; for the case
A singular see Problem 9.1. Suppose an LU factorization exists. Then Ax = LUy
for k = 1: n, which gives

det(Ax) = det(Uk) =Ull... Ukk. (9.1)

Setting k = n we find that 0 # det(4) = uj1...Unn, and hence det(Ax) =
U1 .. .Uk 0, k=Ln—1.

Examples that illustrate the last part of the theorem are [8 8] = [} (1)] [88],
which holds for any I, and [(1] }], which does not have an LU factorization. O

Visually, the condition of Theorem 9.1 is (for n = 5) that the indicated sub-
matrices must be nonsingular:

-ﬂx x | x| %
x x| x|x|x
X X x| x|x
X X X x| x
X X X X X

From (9.1) follows the expression ugx = det(Ax)/det(Ak—1). In fact, all the
elements of L and U can be expressed by determinantal formulae (see, e.g., Gant-
macher [453, 1959, p. 35] or Householder [644, 1964, p. 11]):

det(A([1:j —1,14),1:5)) . _ .
ij = det(AJ)) 1 ZJ, (928.)
 det(A(1:4,[1:4 - 1, 7))
Yis = det(A;_1) ’

i<j. (9.2b)

162 LU FACTORIZATION AND LINEAR EQUATIONS

The effect of partial pivoting is easily seen by considering the case n = 4. We
have

U = MsP;M,P,M, P, A, where Py swaps rows k,7 (1 > k),
= Mz - PsMyPs- P,P,M 1 P,P3- PsP,PL A
——r .. (i e

= MM, M| PA,

where, for example, M| = P3Py(I-m,eT)P, Py = I—(P3Pymy)ef. For k = 1,2,3,
M is the same as My except the multipliers are interchanged. Hence, for n = 4,
GE with partial pivoting (GEPP) applied to A is equivalent to GE without pivoting
applied to the row-permuted matrix PA. This conclusion is true for any n: GEPP
computes a factorization PA = LU. Similarly, GE with rook pivoting or complete
pivoting computes a factorization PAQ = LU, where P and @ are permutation
matrices.

Exploitation of the LU factorization streamlines both the error analysis and the
practical solution of linear systems. Solution of Az = b breaks into a factorization
phase, PA = LU for partial pivoting (O(n®) flops), and a substitution phase, where
the triangular systems Ly = Pb, Uz = y are solved (O(n?) flops). If more than
one system is to be solved with the same coefficient matrix but different right-hand
sides, the factorization can be reused, with a consequent saving in work.

Computing an LU factorization A = LU is equivalent to solving the equations

min(4,5)

aij = E Lirur;.
r=1

If these nonlinear equations are examined in the right order, they are easily solved.
For added generality let A € R™*™ (m > n) and consider an LU factorization with
L € R™*™ and U € R™*™ (L is lower trapezoidal: l;; = 0 for 7 < j). Suppose we
know the first k — 1 columns of L and the first £ — 1 rows of U. Setting lxx = 1,

ak; = lprurj + -+l e—1Uk—1,5 +, j=kn, (9:3)
aik=1i1u1k+"'+ukk7 i=k+1:m (9-4)

We can solve for the boxed elements in the kth row of U and then the kth column
of L. This process is called Doolittle’s method.

Algorithm 9.2 (Doolittle’s method). This algorithm computes an LU factoriza-
tion A = LU € R™*", where m > n (assuming the factorization exists), by
Doolittle’s method.

fork=1n
for j =k:n
(*) Uk; = Qkj — Zf;ll Ty
end
fori=k+1:m
(**) Lik = (aik — Z?;ll Lijujk) /ukk
end

end

9.3 ERROR ANALYSIS 163

Cost: n?(m — n/3) flops.
Doolittle’s method is mathematically equivalent to GE without pivoting, for
we have, in (9.3),

akj — ltyj — - - — lgstis; = afcj.ﬂ) (5 > k), (9.5)

and similarly for (9.4). Had we chosen the normalization u;; = 1, we would have
obtained the Crout method. The Crout and Doolittle methods are well suited
to calculations by hand or with a desk calculator, because they obviate the need
to store the intermediate quantities a! J). They are also attractive when we can
accumulate inner products in extended precision.

It is straightforward to incorporate partial pivoting into Doolittle’s method
(see, e.g., Stewart (1065, 1973, p. 138]). However, rook pivoting and complete
pivoting cannot be incorporated without changing the method.

9.3. Error Analysis

The error analysis of GE is a combination of the error analyses of inner products
and substitution. When this fact is realized, the analysis becomes straightfor-
ward. The key observation leading to this viewpoint is that all mathematically
equivalent variants of GE satisfy a common error bound. To see why, first note
the connection between standard GE, as we have described it, and the Doolittle
method, as shown in (9.5). Whether the inner product in (9.5) is calculated as
one operation, or whether its terms are calculated many operations apart, pre-
cisely the same rounding errors are sustained (assuming that extended precision
accumulation of inner products is not used); all that changes is the moment when
those rounding errors are committed. If we allow inner products to be reordered,
so that, for example, the summation (%) in Algorithm 9.2 is calculated with the
index ¢ decreasing from k£ — 1 to 1, instead of increasing from 1 to k — 1, then the
actual rounding errors are different, but a common bound holds for all orderings.

It suffices, then, to analyse the Doolittle method. It also suffices to analyse the
method without pivoting, because GE with partial, rook, or complete pivoting is
equivalent to GE without pivoting applied to a permuted matrix.

The assignments (x) and (%) in Algorithm 9.2 are of the form y = (¢ —
Z "~ a;b;)/bx, which is analysed in Lemma 8.4. Applying the lemma, we deduce
that, ng matter what the ordering of the inner products, the computed matrices
L and U satisfy (with Jxk := 1)

k—1
E lkz“ﬂ] _ukj
=1
k
Qik — E lijujk
j=1

These inequalities constitute a backward error result for LU factorization.

<7k2|lkz a1, 5>k,
=1

k
<Y lsllagl, > k.
=1

164 LU FACTORIZATION AND LINEAR EQUATIONS

Theorem 9.3. If GE applied to A € R™*™ (m > n) runs to completion then the
computed LU factors L € R™*™ and U € R™*"™ satisfy

LU =A+AA, |AA| <+, |LIiU]. O (9.6)

With only a little more effort, a backward error result can be obtained for the
solution of Az = b.

Theorem 9.4. Let A € R"*" and suppose GE produces computed LU factors E,
U, and a computed solution T to Az =b. Then

(A+AA)F=b, |AA| <, LITL. (9.7)

Proof. From Theorem 9.3, LU = A + AA;, |AA;| < 7,|L||U|. By Theo-
rem 8.5, substitution produces ¥ and 7 satisfying

L+AaLg=b, |AL <L,
T+av)E =7, |AU|<,|0].
Thus
b= (L+AL)(T + AU)zZ
= (A+AA + LAU + ALU + ALAU)Z
= (A+ AA)Z,
where ~ ~ A~
|AA| < (3, +72)ILIU| < 3,|LIUJ,
using Lemma 3.3. O

How do we interpret Theorem 9.4?7 Ideally, we would like |AA| < u|A|, which
corresponds to the uncertainty introduced by rounding the elements of A, but
because each element of A undergoes up to n arithmetic operations we cannot
expect better than a bound |AA| < cpu|A|, where ¢, is a constant of order n.

Such a bound holds if L and U satisfy |L||U| = |ZU|, which certainly holds if L
and U are nonnegative, because then (9.6) gives
ILID| = |LU| = |4 + AA| < |A] +7,]LI[D]

S5 1
Ul < .
= E10) < =14

(9.8)

Substituting into (9.7), we obtain

(A+AAZ =b, |AA| < #IAI (Z,0 > 0. (9.9)
~Tn
This result says that Z has a small componentwise relative backward error.
One class of matrices that has nonnegative LU factors is defined as follows.
A € R ™ is totally positive (nonnegative) if the determinant of every square
submatrix is positive (nonnegative). In particular, this definition requires that

9.3 ERROR ANALYSIS 165

a;j and det(A) be positive or nonnegative. Some examples of totally nonnegative
matrices are given in Chapter 28. If A is totally nonnegative then it has an LU
factorization A = LU in which L and U are totally nonnegative, so tAhat L>0
and U > 0 (see Problem 9.6); moreover, the computed factors L and U from GE
are nonnegative for sufficiently small values of the unit roundoff » [300, 1977].
Inverses of totally nonnegative matrices also have the property that |A| = |L||U]|
(see Problem 9.8). Note that the property of a matrix or its inverse being totally
nonnegative is generally destroyed under row permutations. Hence for totally
nonnegative matrices and their inverses it is best to use Gaussian elimination
without pivoting.

One important fact that follows from (9.6) and (9.7) is that the stability of GE
is determined not by the size of the multipliers /l;j but by the size of the matrix
|f,||l7 |. This matrix can be small when the multipliers are large, and large when
the multipliers are of order 1 (as we will see in the next section).

To understand the stability of GE further we turn to norms. For GE without
pivoting, the ratio || |L||U]|||/||A|| can be arbitrarily large. For example, for the
matrix [; 1] the ratio is of order e~!. Assume then that partial pivoting is used.
Then |l;;| < 1 for all 4 > j, since the l;; are the multipliers. And it is easy to show
by induction that |u;;] < 2°~! maxk<i |ax;|. Hence, for partial pivoting, L is small
and U is bounded relative to A.

Traditionally, backward error analysis for GE is expressed in terms of the growth
factor

maxi, j,k lag-“)l
Pn=—"—"T_ 1.1
max; j |aij|
which involves all the elements ag.c) (k = 1:n) that occur during the elimination.

Using the bound |u;;| = |ag.)| < pnpmax; j |a;;| we obtain the following classic
theorem.

Theorem 9.5 (Wilkinson). Let A € R™*™ and suppose GE with partial pivoting
produces a computed solution T to Az =b. Then

(A+ AA)Z = b, [AA]je < n2’)’3npn 1 Alloo- g (9.10)

We hasten to admit to using an illicit manoeuvre in the derivation of this
theorem: we have used bounds for L and U that strictly are valid only for the
exact L and U. We could instead have defined the growth factor in terms of

the computed Eg-c), but then any bounds for the growth factor would involve the

unit roundoff (similarly, we can only guarantee that [ZJ| <1+ u). Our breach of
correctness is harmless for the purposes to which we will put the theorem.

The assumption in Theorem 9.5 that partial pivoting is used is not necessary:
II|Z]|U| oo can also be bounded in terms of the growth factor for GE without
pivoting, as the next result shows.

Lemma 9.6. If A= LU € R**™ is an LU factorization produced by GE without
pivoting then
LU oo < (14 2(n® = n)pp)||Alloo-

166 LU FACTORIZATION AND LINEAR EQUATIONS

Table 9.1. Classes of matrices for which p, = O(1) for GE without pivoting.

Matrix property | Reference
Totally nonnegative §9.3
Row or column diagonally dominant §9.5
Symmetric positive definite §10.1.1
Complex symmetric with positive definite

Hermitian and skew-Hermitian parts §10.4

Proof. Let I; denote the jth column of L and u denote the ith row of U.
Then B _
AFFD = A®) _p 0l k=1in-—1,

where A(%) denotes A*) with the elements in rows 1:k — 1 set to zero. Thus
Ilk”“f] = llkuff < lj(k)l + 'g(kﬂ),

and hence . .
ILIIU] =Y lllf] <A +2) " |4,
k=1 k=2

Taking norms and using |az(-;)l < pnpmax; ; |ai;| gives
LU Moo < [1Alloo +2(n = D)npnl|Afleo = (1 +2(n ~ D)npg) | Allo. O

It is also possible to bound the growth factor above in terms of || [L||U] || ; see
Problem 9.9.

Since the normwise backward stability of GE with or without pivoting is gov-
erned by the growth factor, we next turn our attention to analysis of the growth
factor. As a prelude, Table 9.1 summarizes classes of matrices for which the growth
factor for GE without pivoting is small, and for which it is therefore safe not to
pivot.

9.4. The Growth Factor

It is easy to show that p, < 277! for partial pivoting. Wilkinson notes that this
upper bound is achieved for matrices of the form illustrated for n = 4 by

1 0 0 1
-1 1 01
-1 -1 11
-1 -1 -1 1

For these matrices, no interchanges are required by partial pivoting, and there is
exponential growth of elements in the last column of the reduced matrices. In
fact, this is just one of a nontrivial class of matrices for which partial pivoting
achieves maximal growth. When necessary in the rest of this chapter, we denote
the growth factor for partial pivoting by p? and that for complete pivoting by p<.

9.4 THE GROWTH FACTOR 167

Theorem 9.7 (Higham and Higham). All real nxn matrices A for which p?(A) =
2n~1 are of the form

A:DM{T : ad},

0
where D = diag(+1), M is unit lower triangular with m;; = —1 fori > j, T is an
arbitrary nonsingular upper triangular matriz of ordern—1, d = (1,2,4,...,2")T,
and a is a scalar such that o := |a1n| = max; j |aij|.

Proof. GEPP applied to a matrix A gives a factorization B := PA = LU,
where P is a permutation matrix. It is easy to show that |u;;| < 2°7! max,<; |b-;|,
with equality for ¢ = s only if there is equality for ¢ = 1:s — 1. Thus p, =
2"~! implies that the last column of U has the form aDd, and also that |by,| =
max; ; |bij|. By considering the final column of B, and imposing the requirement
that |I;;| < 1, it is easy to show that the unit lower triangular matrix L must have
the form L = DM D. It follows that at each stage of the reduction every multiplier
is +£1; hence no interchanges are performed, that is, P = I. The only requirement
on T is that it be nonsingular, for if ¢;; = 0 then the ¢th elimination stage would
be skipped because of a zero pivot column and no growth would be produced on
that stage. 0

Note that by varying the elements m;; (i > j) and the vector d in Theorem 9.7
we can construct matrices for which p? achieves any desired value between 1 and
2l

Despite the existence of matrices for which p,, is large with partial pivoting, the
growth factor is almost invariably small in practice. For example, Wilkinson says
“It is our experience that any substantial increase in size of elements of successive
A, is extremely uncommon even with partial pivoting ... No example which has
arisen naturally has in my experience given an increase by a factor as large as
16” [1233, 1965, pp. 213-214].

Matrices that yield large growth factors and that arise, or could arise, in prac-
tical applications, are rare. Wright [1261, 1993] has found a class of two-point
boundary value problems that, when solved by the multiple shooting method, yield
a linear system for which partial pivoting suffers exponential growth. The matrix
is block lower bidiagonal, except for a nonzero block in the top right-hand cor-
ner. Furthermore, Foster [434, 1994] shows that a quadrature method for solving
a practically occurring Volterra integral equation gives rise to linear systems for
which partial pivoting again gives large growth factors.

There exist some well-known matrices that give unusually large, but not expo-
nential, growth. They can be found using the following theorem, which is appli-
cable whatever the strategy for interchanging rows and columns in GE.

Theorem 9.8 (Higham and Higham). Let A € C™*" be nonsingular and set a =
max; ; a;;|, B = maXi’jI(A_l)ij , and 8 = (af)"!. Then 6 < n, and for any

permutation matrices P and Q such that PAQ has an LU factorization, the growth
factor p,, for GE without pivoting on P AQ satisfies p, > 6.

168 LU FACTORIZATION AND LINEAR EQUATIONS

Proof. The inequality 6 < n follows from }°7_, as; (A‘l)ji = 1. Consider an
LU factorization PAQ = LU computed by GE. We have

lumal = lexU ™ e, = [T U L7 e, | = [QTAT PTe, |

= I(A’l)ij] for some i, j (9.11)
<@
Hence max;,j &]a£§)| > |unn| > 871, and the result follows. O

Note that 8! = a3 satisfies ko(A4)™! < 671 < n?koo(A)~L. Clearly, A has
to be very well conditioned for the theorem to provide a lower bound 6 near the
maximum of n.

We apply the theorem to three noncontrived matrices that appear in practical

applications.
2 17 ™
= i 9.12
Sn \/n+1(sm(n+1))i7j:1 (9.12)

(1) The matrix
is the symmetric, orthogonal eigenvector matrix for the second difference matrix
(the tridiagonal matrix with typical row (=1, 2, —1)—see §28.5); it arises, for
example, in the analysis of time series [24, 1971, §6.5]. Theorem 9.8 gives p,, (Sn) >
(n+1)/2.

(2) A Hadamard matrix H, is an n x n matrix with elements h;; = £1 and
for which the rows of H,, are mutually orthogonal. Hadamard matrices exist only
for certain n; a necessary condition for their existence if n > 2 is that n is a
multiple of 4. For more about Hadamard matrices see Hall [538, 1967, Chap. 14],
Hedayat, Sloane, and Stufken [557, 1999, Chap. 7], Wallis 1205, 1993], and Wallis,
Street, and Wallis [1206, 1972]. We have H, HI = nl, and so H;! = n~'HT.
Theorem 9.8 gives p, > n.

(3) The next matrix is a complex Vandermonde matrix based on the roots of
unity, which occurs in the evaluation of Fourier transforms (see §24.1):

n

Vo= (exp(—21ri(r —-1)(s — 1)/n))r i (9.13)
Since V7! = n='V.H# | Theorem 9.8 gives p,,(V,) > n.

Note that each of these matrices is orthogonal or unitary (to within a row
scaling in the case of the Hadamard matrix), so it is not necessary to apply GE
to them! This may explain why growth factors of order n for these matrices have
not been reported in the literature as occurring in practice.

To summarize, although there are practically occurring matrices for which par-
tial pivoting yields a moderately large, or even exponentially large, growth factor,
the growth factor is almost invariably found to be small. Explaining this fact re-
mains one of the major unsolved problems in numerical analysis. The best attempt
to date is by Trefethen and Schreiber [1157, 1990], who develop a statistical model
of the average growth factor for partial pivoting and complete pivoting. Their
model supports their empirical findings that for various distributions of random
matrices the average growth factor (normalized by the standard deviation of the

9.4 THE GROWTH FACTOR 169

1020 T T T T T
1 : — — Partial pivoting
! -—-- Rook pivoting
: _ —— Complete pivoting
100% L e LT T
1 : : .- :
! : =T
! PR
t : PR
1010_: // e -
t // : :
s
[
[
105 _'_/- e —
I _
b :
{ ;
1¢° : I I I i
0 200 400 600 800 1000

Figure 9.2. Upper bounds for growth factors p, for partial pivoting, rook pivoting, and

complete pivoting.

initial matrix elements) is close to n?/3 for partial pivoting and n!/2 for complete
pivoting (for n < 1024). Extensive experiments by Edelman suggest that for ran-
dom matrices from the normal N(0, 1) distribution the unnormalized growth factor
for partial pivoting grows like nl/2 [382, 1995]. Trefethen and Bau [1156, 1997,
Lecture 22] outline a possible strategy for explaining the growth factor behaviour:
their idea is to show that for a matrix to produce a large growth factor with partial
pivoting its column spaces must possess a certain skewness property and then to
prove that this property holds with low probability for random matrices.

We turn now to complete pivoting. Wilkinson [1229, 1961, pp. 282—-285] showed

that

p,i < n1/2(2 .gl/2, “nl/(n—l))l/2 ~ Cnl/Zn%Iogn, (9.14)
and that this bound is not attainable. As Figure 9.2 illustrates, the bound is a
much more slowly growing function than 2", but it can still be quite large (e.g.,
it is 3570 for n = 100). As for partial pivoting, in practice the growth factor is
usually small. Wilkinson stated that “no matrix has been encountered in practice
for which p,/p,, was as large as 8” [1229, 1961, p. 285] and that “no matrix has yet
been discovered for which f(r) > r” [1233, 1965, p. 213] (here, p; is the (n—i+1)st
pivot and f(r) := pf).

Cryer [282, 1968] defined
(9.15)

g(n) = sup p5(A).
AeRan

The following results are known:
e g(2) = 2 (trivial).
e g(3) = 2%; Tornheim (1149, 1965] and Cohen (257, 1974].

170 LU FACTORIZATION AND LINEAR EQUATIONS

e g(4) = 4; Cryer [282, 1968] and Cohen [257, 1974].
e g(5) < 5.005; Cohen [257, 1974].

Tornheim [1149, 1965)] (see also Cryer [282, 1968]) showed that pS(H,) > n for
any n x n Hadamard matrix H,, (a bound which, as we saw above, holds for any
form of pivoting). For n such that a Hadamard matrix does not exist, the best
known lower bound is g(n) > pS(Sn) = (n+1)/2 (see (9.12)).

Cryer [282, 1968] conjectured that for real matrices p¢(A4) < n, with equality if
and only if A is a Hadamard matrix. The conjecture p¢(A) < n became one of the
most famous open problems in numerical analysis, and has been investigated by
many mathematicians. The conjecture was finally shown to be false in 1991. Using
a package LANCELOT (263, 1992] designed for large-scale nonlinear optimization,
Gould [513, 1991] discovered a 13 x 13 matrix for which the growth factor is 13.0205
in IEEE double precision floating point arithmetic. Edelman subsequently showed,
using the symbolic manipulation packages Mathematica and Maple, that a growth
factor 13.02 can be achieved in exact arithmetic by making a small perturbation
(of relative size 10~7) to one element of Gould’s matrix [374, 1992], (385, 1991]. A
more striking counterexample to the conjecture is a matrix of order 25 for which
pSs = 32.986341 [374, 1992]. Interesting problems remain, such as determining
limp_,00 g(n)/n and evaluating p¢ for Hadamard matrices (see Problem 9.17).

For complex matrices the maximum growth factor is at least n for any n, since
p5 (V) > n (see (9.13)). The growth can exceed n, even for n = 3: Tornheim [1149,
1965] constructed the example

1
A=1[1 =z 2z7'], z=(-14+1iV8)/3,
1

for which p§(A) = 3.079.

Finally, we turn to rook pivoting. Foster [435, 1997] has shown that the growth
factor for rook pivoting satisfies

pn < 1503187, (9.16)

This bound grows only slightly faster than that in (9.14) for complete pivoting
and is much slower growing than that for partial pivoting; see Figure 9.2. Noth-
ing is known about the largest attainable growth factor for rook pivoting (see
Problem 9.18).

Figure 9.3 shows the results of an experiment in which, for each dimension
n = 100:100: 1500, 10 random matrices from the normal N(0, 1) distribution and
10 from the uniform [0, 1] distribution were factorized by LU factorization with
partial pivoting, rook pivoting, and complete pivoting. The maximum growth
factors and the number of comparisons (averaged in the case of rook pivoting) are
plotted against n.

9.5. Diagonally Dominant and Banded Matrices

For matrices with certain special properties, more can be said about the behaviour
of GE and, in particular, the size of the growth factor.

9.5 DIAGONALLY DOMINANT AND BANDED MATRICES 171

—x— Partial pivoting
- % Rook pivoting
-©- Complete pivoting

Normal N(0,1)
40] 1

30 =

~ * o
Py 20| x N e e -

0 500 n 1000 1500

-
[=}
I

0 500 n 1000 1500

Normal (0,1)

)

Comparisons
~
o
o
T

0 500 n 1000 1500

Comparisons
-
o
-]
T

0 500 n 1000 1500

Figure 9.3. Mazimum growth factors p, (top) and average number of comparisons (bot-
tom) for 15000 random matrices of dimension n = 100: 100: 1500.

172 LU FACTORIZATION AND LINEAR EQUATIONS

As a first example, suppose A € C**" is diagonally dominant by rows,

Z laij| < laul, i=1:n,

J#i

or diagonally dominant by columns, that is, A* is diagonally dominant by rows.
Then GE without pivoting is perfectly stable.

Theorem 9.9 (Wilkinson). Let A € C**™ be nonsingular. If A is diagonally
dominant by rows or columns then A has an LU factorization without pivoting and
the growth factor p, < 2. If A is diagonally dominant by columns then |l;;| < 1 for
all i and j in the LU factorization without pivoting (hence GEPP does not require
any row interchanges).

Proof. The result follows immediately from the more general Theorems 13.7
and 13.8 for block diagonally dominant matrices. (Note that the diagonal elements
of A are nonzero, since otherwise the diagonal dominance would imply that A has

a zero row or column, contradicting the nonsingularity of A. Therefore (13.17)
holds.) 0

Note that for a matrix diagonally dominant by rows the multipliers can be
arbitrarily large but, nevertheless, p,, < 2, so GE is perfectly stable. In fact, by
writing |L||U| = |[AUM||U| < |A|[U-!||U| and invoking Lemma 8.8 we find that

HZIU] oo < (20 = 1) Alloo: (9.17)
This bound shows clearly that any large multipliers in L must be cancelled by
correspondingly small elements of U.

A smaller bound for the growth factor also holds for an upper Hessenberg
matriz: a matrix H € C**™ for which h;; =0 fori > j + 1.

Theorem 9.10 (Wilkinson). If A € C**™ is upper Hessenberg then p? < n.

Proof. The structure of an upper Hessenberg H means that at each stage
of GEPP we just add a multiple of the pivot row to the next row (after possibly
swapping these two rows). That p? < n is a consequence of the following claim,
which is easily proved by induction: at the start of stage k, row k + 1 of the
reduced matrix is the same as row k + 1 of the original matrix, and the pivot row
has elements of modulus at most k times the largest element of H. O

A matrix A € C**™ has lower bandwidth p and upper bandwidth q if a;; = 0 for
1> j+pand j > i+ q see Figure 9.4. It is well known that in an LU factorization
of a banded matrix the factors inherit A’s band structure: L has lower bandwidth
p and U has upper bandwidth ¢. If partial pivoting is used then, in PA = LU,
L has at most p + 1 nonzeros per column and U has upper bandwidth p + g.
(For proofs of these properties see Golub and Van Loan [509, 1996, §4.3].) It is
not hard to see that for a banded matrix, +,, in Theorem 9.3 can be replaced by
Vmax(p+1,g+1) @0d V3, in Theorem 9.4 can be replaced by Vi uypi1,0+1) T Tptar1-

9.5 DIAGONALLY DOMINANT AND BANDED MATRICES 173

g+1

p+1 0

Figure 9.4. A banded matriz.

The following result bounds the growth factor for partial pivoting on a banded
matrix.

Theorem 9.11 (Bohte). If A € C"*" has upper and lower bandwidths p then
pP < 2%~1 — (p—1)2P=2, and this bound is almost attainable when n = 2p + 1.

Proof. See Bohte [146, 1975]. An example with n = 9 and p = 4 in which
equality is almost attained is the matrix

-1 -1 -1 -1 1
-1 1 0 0 0
-1 -1 1 0 0
-1 -1 -1 1 0
A= | 1+e€ 0 0 0 0
0 -1 -1 -1 -1 1

o 0 -1 -1 -1 -1

0 O o -1 -1 -1 -
0 O o 0 -1 -1 -

P OOOOOOOoO

—H = R RO0OO00O0

where € is an arbitrarily small positive number that ensures that rows 1 and 5
are interchanged on the first stage of the elimination, this being the only row
interchange required. Ignoring terms in €, the last column of U in PA = LU is

(1, 1, 2, 4, 8, 16, 31, 60, 116]7
and the growth factor is 116. O

A special case of Theorem 9.11 is the easily verified result that for a tridiagonal
matrix, p? < 2. Hence GEPP achieves a small normwise backward error for tridi-
agonal matrices. In the next section we show that for several types of tridiagonal
matrix GE without pivoting achieves a small componentwise backward error.

174 LU FACTORIZATION AND LINEAR EQUATIONS

9.6. Tridiagonal Matrices

Consider the nonsingular tridiagonal matrix
_dl €1)
Co d2 (%]
A= e R™™™,
. . -

Cn dy

and assume that A has an LU factorization A = LU, where

1 “u; e
I 1 Uz €2

L= I3 1 , U= . (9.18)

GE for computing L and U is described by the recurrence relations

li =ci/u;—
u = dp; P = efuin i=2n. (9.19)
u; = di —lieiy
For the computed quantities, we have
I+e)li==—, |al<u,
Ui—1
(1+9¢)Q’Zi =d; —liei_1(1+(5i), leil)léil <u.

Hence . .
lei — Liti—q| < wllit;—],

|d; —Tie;1 — 0| < u(lfiei—ﬂ + 1a;]).
In matrix terms these bounds may be written as
A=LU+ A4, |AA| <u|Lj|T]. (9.20)

If the LU factorization is used to solve a system Az = b by forward and back sub-
stitution then it is straightforward to show that the computed solution T satisfies

(L+ALYU+AU)E=b, |ALI <ulLl, |AU|< Qu+ud)|Tl. (9.21)
Combining (9.20) and (9.21) we have, overall,
(A+AA4)T=b, |AA < FILIT), f(u)=4u+3u? + 2. (9.22)

The backward error result (9.22) applies to arbitrary nonsingular tridiagonal A
having an LU factorization. We are interested in determining classes of tridiagonal
A for which a bound of the form |AA| < g(u)|A| holds. Such a bound will hold if
|L||U| = |ZU|, as noted in §9.3 (see (9.8)).

Three classes of matrices for which |E||ff | = |ZU| holds for the exact L and U
are identified in the following theorem.

9.6 TRIDIAGONAL MATRICES 175

Theorem 9.12. Let A € R™*™ be nonsingular and tridiagonal. If any of the
following conditions hold then A has an LU factorization and |L||U| = |LU|:

(a) A is symmetric positive definite;

(b) A is totally nonnegative, or equivalently, L > 0 and U > 0;

(c) A is an M -matriz, or equivalently, L and U have positive diagonal elements
and nonpositive off-diagonal elements;

(d) A is sign equivalent to a matriz B of type (a)—(c), that is, A = D1BD,,
where |D;| = |D2| = 1.

Proof. For (a), it is well known that a symmetric positive definite A has an
LU factorization in which U = DLT, where D is diagonal with positive diagonal
elements. Hence |L||U| = |L||D||LT| = |[LDLT| = |LU|, where the middle equality
requires a little thought. In (b) and (c) the equivalences, and the existence of an
LU factorization, follow from known results on totally nonnegative matrices [284,
1976] and M-matrices [106, 1994); |L||U| = |LU| is immediate from the sign
properties of L and U. (d) is trivial. O

For diagonally dominant tridiagonal matrices, |L||U]| is not equal to |LU| = |A|,
but it cannot be much bigger.

Theorem 9.13. Suppose A € R™*" is nonsingular, tridiagonal, and diagonally
dominant by rows or columns, and let A have the LU factorization A = LU. Then
ILIIU| < 3|4

Proof. If |i — j| = 1 then (|L||UD1.J. = |asjl, so it suffices to consider the
diagonal elements and show that (using the notation of (9.18))

|l,~ei_1| + |ui| < 3|di|.

The rest of the proof is for the case where A is diagonally dominant by rows; the
proof for diagonal dominance by columns is similar.

First, we claim that |e;| < |u;| for all . The proof is by induction. For i = 1
the result is immediate, and if it is true for ¢ — 1 then, from (9.19),

[ui] > |di] — |lillei—1| = |ds| —
> |d;] — les| > les,

as required. Note that, similarly, |u;| < |d;| + |c;|- Finally,

c:
|liei—1| + |ui| = ’—161'—1 + ui| < ei] + |ug
Ui—1

< les| + (1dsl + |esl)
< 3|di|. a

176 LU FACTORIZATION AND LINEAR EQUATIONS

Theorem 9.14. If the nonsingular tridiagonal matriz A is of type (a)-(d) in The-
orem 9.12, and if the unit roundoff u is sufficiently small, then GE for solving
Az = b succeeds and the computed solution T satisfies

du + 3u? +

(A+AF=b, |AAl<h@IAL k) = =5

The same conclusion is true if A is diagonally dominant by rows or columns, with
no restriction on u, provided the bound is multiplied by 3.

Proof. If u is sufficiently small then for types (a)—(c) the diagonal elements of
U will be positive, since #; — u; > 0 as u — 0. It is easy to see that &; > 0 for
all 4 ensures that |L||U| = |LU|. The argument is similar for type (d). The result
therefore follows from (9.22) and (9.8). The last part is trivial. 0

A corollary of Theorem 9.14 is that it is not necessary to pivot for the matrices
specified in the theorem (and, indeed, pivoting could vitiate the result of the
theorem). Note that large multipliers may occur under the conditions of the
theorem, but they do not affect the stability. For example, consider the M-matrix

2 -2 0 1 0 0 2 -2 0
A=]e—2 2 0f=1](—-2)/2 1 o[[0 € 0] =LU,
0 -1 3 0 “1/e 1|0 o 3

where 0 < € < 2. The multiplier I3, is unbounded as ¢ — 0, but |L||U| = |A| and
GE performs very stably, as Theorem 9.14 shows it must.

9.7. More Error Bounds

From Theorem 9.4 it follows that the computed solution Z from GE satisfies

2 — 2o 1A~ YZNT1E] lloo
T T

?

and this bound can be simplified to, for example,

1IN o
Al

Given particular information about A it is often possible to obtain much stronger
bounds. For example, if A is totally nonnegative then we know that GE produces
a small componentwise relative backward error, as shown by (9.9), and hence
|z — Z||oo/||z||co is bounded by a multiple of cond(A, z)u.
Here is a line of attack that is fruitful in several situations. By Theorem 9.3
the computed LU factors satisfy LU = A + AAg, with |AAo| < "ynlLHUl Hence
= (A+ AA4)TU1

llz]loo

S YanKoo (A)

|Z||r7| <A+ A4|lTHD) < (14 + 2 ZITDIT D),
which gives, since 1 — 'yn|(7_1||ﬁ| is an M-matrix for v,, < 1,

LT | < [ANT- 011 = ~,| U0~

9.8 SCALING AND CHOICE OF PIVOTING STRATEGY 177

From Theorem 9.4, (A + AA)Z = b, with
|AA] < Y3, | LT < 73 AT T = 7, [T[T

It follows that GE has a row-wise backward error bounded by a multiple of
cond(U)u (see Table 7.1). Correspondingly, the forward error is easily seen to
satisfy

_~ -1 O-11Tz
[l wlloos?muII |[ATHANT | Ilelloo+O(u2)
[lloo Izl oo
< 3nucond(A) cond(U) + O(u?). (9.23)

In general, cond(U) is unbounded, but from results in Chapter 8 we know that

e cond(U) < 2™ —1 for rook pivoting and complete pivoting for general A (see
Lemma 8.6),

e cond(U) < 2n — 1 for GE without pivoting applied to row diagonally domi-
~ nant matrices (see Lemma 8.8).

An interesting conclusion is that a small row-wise backward error and (hence) a
forward error bounded by a multiple of cond(A) are guaranteed for row diagonally
dominant matrices.

We continue the discussion of row-wise error bounds in the next section.

9.8. Scaling and Choice of Pivoting Strategy

Prior to solving a linear system Az = b by GE we are at liberty to scale the rows
and the columns:

Az =b — D1AD,-D;'z=Db, or Ay=c, (9.24)

where D; and D, are nonsingular diagonal matrices. We apply GE to the scaled
system A’y = ¢ and then recover z from z = Dyy. Although scaling was used in
some of the earliest published programs for GE [431, 1967], [836, 1962], how best
to choose a scaling is still not well understood, and no single scaling algorithm can
be guaranteed always to perform satisfactorily. Wilkinson’s remark “We cannot
decide whether equations are ill-conditioned without examining the way in which
the coefficients were derived” [1233, 1965, p. 198] sums up the problem of scaling
rather well.

The effect of scaling in GE without pivoting is easy to describe. If the elements
of D; and D, are powers of the machine base 8 (so that the scaling is done
without error) and GE produces L and U satisfying A + AA = i , then gE on
A’ = D, AD; produces D, LD ! and D, U D, satisfying A'+Dy; AAD, = D, LDy
le:f D,. In other words, the rounding errors in GE scale in the same way as A.
This is a result of Bauer [89, 1963] (see [431, 1967, Chap. 11] for a clear proof
and discussion). With partial pivoting, however, the choice of pivots is affected by
the row scaling (though not the column scaling), and in a way that is difficult to
predict.

178 LU FACTORIZATION AND LINEAR EQUATIONS

We can take a method-independent approach to scaling, by considering any
method for solving Az = b that yields a solution satisfying

< Cpkoo(A)u,

with ¢, a constant. For the scaled system (9.24) we have

-1 o~
Mﬁ < Cpkoo (D1 AD2)u,
1Dz "zl
so it is natural to choose D; and Dj to minimize koo (D1 AD2). As we saw in §7.3
(Theorem 7.8) the minimum possible value is p(|]A||A™!|). However, a column
scaling has the (usually) undesirable effect of changing the norm in which the
error is measured. With row scaling only, the minimum value of ko, (D1 A) is
cond(A) = ||]A™!||A| || o, achieved when D; A has rows of unit 1-norm (see (7.15)).
Thus row equilibration yields a cond-bounded forward error.
Specializing to GE, we can say more. If A is row-equilibrated in the 1-norm then
|Ale = e and hence, from Theorem 9.4, the backward error matrix AA satisfies

|AA] < 43, LT[< Y30l LT ooee” = 13l ILIT] [l ool Alee™ .

In other words, if GE is normwise backward stable then it is row-wise backward
stable (cf. Table 7.1), as noted by Skeel [1042, 1981].

We have already seen in §9.7 that a cond-bounded forward error is guaranteed
for GE without pivoting on a row diagonally dominant matrix and for GE with
rook pivoting or complete pivoting on an arbitrary matrix, provided that cond(U)
is of order 1. Further possibilities exist: if we LU factorize A7 instead of A (thus
effectively carrying out column operations rather than row operations on A) then
from (9.23) with the roles of L and U interchanged it follows that GEPP has a
cond-bounded forward error if cond(LT) is of order 1. With a suitable scaling it is
possible to do even better. Skeel [1040, 1979] shows that for D; = diag(|Al|z|)~},
GEPP on A is backward stable in the componentwise relative sense, and hence a
forward error bound proportional to cond(A4,z) = |||A7}||Al|z| ||o/||Z]lc holds;
the catch is, of course, that the scaling depends on the unknown solution z! Row
equilibration can be regarded as approximating z by e in this “optimal” scaling.

Despite the variety of possible scalings and pivoting strategies and the catalogue
of situations in which a particular pivoting strategy may have a smaller error bound
than the usual theory predicts, in practice general linear systems are virtually
always solved by unscaled GEPP. There are three main reasons:

1. Most users of GEPP feel that it performs well in practice.

2. GEPP has a long history of use in software libraries and packages (see
page 188), and inertia makes it difficult to replace it. (For example, the
LINPACK and LAPACK LU factorization routines use partial pivoting.
LINPACK does not include scaling, while LAPACK’s GEPP driver routine
xGESVX offers an initial scaling as an option.)

9.9 VARIANTS OF GAUSSIAN ELIMINATION 179

3. A cond(A4, z)-bounded forward error and a small componentwise relative
backward error are both achieved by following GEPP with fixed precision
iterative refinement (under mild assumptions); see §12.2.

This last point explains why scaling, rook pivoting, and complete pivoting are
not popular with numerical analysts for general linear systems. None of these
techniques, with the exception of Skeel’s optimal but implicitly defined scaling,
guarantees a small componentwise relative backward error. Yet fixed precision
refinement as a supplement to GEPP yields this ideal form of stability whenever
it can reasonably be expected to and at negligible cost.

Some programs for GEPP incorporate row scaling implicitly. They compute
row scale factors dy,...,d,, but, instead of applying GEPP to diag(d;)~! x
A, they apply it to A and choose as pivot row at the kth stage a row r for
which dr|a£’;)[is maximal. This type of scaling has the sole effect of influencing
the choice of pivots. There is little justification for using it, and the best bound
for the growth factor is 2" ! multiplied by a product of terms d;, /d;, that can be
large.

There is, however, one situation in which a form of implicit row scaling is
beneficial. Consider the pivoting strategy that selects as the kth pivot an element
ag;c) for which

lat®| Ja{P|

A (1, kYoo ok JAB(, kn) oo (9.25)

A result of Pena [932, 1996] shows that if there exists a permutation matrix P
such that PA has an LU factorization PA = LU with |PA| = |L||U|, then such
a factorization will be produced by the pivoting scheme (9.25). This means that,
unlike for partial pivoting, we can use the pivoting scheme (9.25) with impunity on
totally nonnegative matrices and their inverses, row permutations of such matrices,
and any matrix for which some row permutation has the “|PA| = |L||U|” property.
However, this pivoting strategy is as expensive as complete pivoting to implement,
and for general A it is not guaranteed to produce a factorization as stable as that
produced by partial pivoting.

9.9. Variants of Gaussian Elimination

Some variants of GE and partial pivoting have been proposed, mainly motivated
by parallel computing and the aim of avoiding the sequential search down a column
required by partial pivoting.

One idea is, at each element-zeroing step of GE, to interchange (if necessary)
the pivot row and the row whose first element is to be zeroed to ensure that the
multiplier is bounded by 1. In one particular algorithm, the first stage introduces
zeros into elements (2,1), (3,1), ..., (n,1), in this order, and the potential row
interchanges are 1 «» 2, 1 « 3, ..., 1 «< n, instead of just one row interchange
as for partial pivoting. As well as saving on the pivot searching, this method has
the advantage of permitting eliminations to be performed in parallel. For a 6 x 6
matrix we can represent the elimination as follows, where an integer & denotes

180 LU FACTORIZATION AND LINEAR EQUATIONS

elements that can be eliminated in parallel on the kth stage:

g W~ X
SOk w X X
N oo X X X
00 X X X X
© X X X X X
X X X X X X

In general, there are 2n—3 stages in each of which up to n/2 elements are eliminated
in parallel. This algorithm is discussed by Wilkinson [1233, 1965, pp. 236-237]
and Gallivan, Plemmons, and Sameh [452, 19go]. Sorensen [1057, 1985] derives
a backward error bound for the factorization that is proportional to 4™ which,
roughly, comprises a factor 2"~! bounding the growth factor and a factor 27!
bounding “L”.

Another variant of GE is pairwise elimination, in which all row operations and
row interchanges are between pairs of adjacent rows only. This method is discussed
by Trefethen and Schreiber (1157, 1990] and is called Neville elimination by Gasca
and Pefia [461, 1992], who apply it to totally positive matrices. An error analysis
of the method is given in [13, 1997].

Yet another idea is to avoid row interchanges altogether by adding plus or
minus the row chosen by partial pivoting to the natural pivot row, thus ensuring
that the multipliers are all bounded by 1. Mead, Renaut, and Welfert [838, 2001]
show that the growth factor for this modified form of GEPP is bounded by 3",
and that this bound is nearly attainable.

9.10. A Posteriori Stability Tests

Having solved a linear system by LU factorization we can compute the component-
wise or normwise backward error at the cost of evaluating one or two matrix—vector
products (see Theorems 7.1 and 7.3). In some situations, though, we may wish to
assess the stability of a computed LU factorization before using it to solve one or
more linear systems. One possibility is to compute the growth factor by monitor-
ing the size of elements during the elimination, at a cost of O(n3) comparisons.
This has been regarded as rather expensive, and more efficient ways to estimate
pn have been sought.

Businger [188, 1971] describes a way to obtain an upper bound for p, in O(n?)
operations. This approach is generalized by Erisman and Reid [393, 1974], who
apply the Hélder inequality to the equation

k
k+1 ..
az(j) = ;5 — E liru.,-j, 1,] > k,

T:l
to obtain the bound
k
lafs ™01 < Jais| + N avs - - L)l N g -y g

< maxag + max | sy g llpmax (s, o wi-15)ll (926

9.11 SENSITIVITY OF THE LU FACTORIZATION 181

where p~! 4+ ¢~! = 1. In practice, p = 1,2, 00 are the values of interest. Barlow
[69, 1986] notes that application of the Hélder inequality instead to
" min(4,5)
(7 — Z lzrur]
r=k+1

yields a sometimes sharper bound.

It is interesting to note that in light of experience with the bound (9.26), Reid
(980, 1987] recommends computing the growth factor explicitly in the context of
sparse matrices, arguing that the expense is justified because (9.26) can be a very
weak bound. See Erisman et al. [392, 1987] for some empirical results on the
quality of the bound. R

Chu and George [235, 1985] observe that the co-norm of the matrix |L||U| can
be computed in O(n?) operations without forming the matrix explicitly, since

LD lso = 11ZN1T e lloo = [HZI(Te) lloo-

Thus one can cheaply compute a bound on ||AA||e from the componentwise back-
ward error bounds in (9.6) and (9.7).

All the methods discussed in this section make use of an a priori error analysis
to compute bounds on the backward error. Because the bounds do not take into
account the statistical distribution of rounding errors, and because they involve
somewhat pessimistic constant terms, they cannot be expected to be very sharp.
Thus it is important not to forget that it is straightforward to compute the back-
ward error itself: A — LU. _Exact computation costs a prohibitively expensive
O(n®) operations, but |4 — LU||; can be estimated in O(n?) operations using the
matrix norm estimator in Algorithm 15.4. Another possibility is to use a running

error analysis, in which an error bound is computed concurrently with the factors
(see §3.3).

9.11. Sensitivity of the LU Factorization

Although Theorem 9.3 bounds the backward error of the computed LU factors L
and U it does not give any indication about the size of the forward errors L — L
and U — U. For most applications of the LU factorization it is the backward error
and not the forward errors that matters, but it is still of some interest to know
how big the forward errors can be. This is a question of perturbation theory and
is answered by the next result.

Theorem 9.15 (Barrlund, Sun). Let the nonsingular matrices A € R™*™ and
A+ AA have LU factorizations A= LU and A+ AA = (L+ AL)(U + AU), and
assume that |G|z < 1, where G = L"YAAU-!. Then

{“AL”F IIAUIIF}< IGIF o _IL7 MU 2l All: 1AAllE
IZllz 7 WUllz J = 1=IGlla = 1 = IL7 21U 21| AAll2 |AllF
(9.27)

182 LU FACTORIZATION AND LINEAR EQUATIONS

Moreover, if p(|G|) < 1, where G = (L + AL)~"*AA(U + AU)™!, then

|AL| < |L + AL|stril((I - |G])7YG),
|AU| < triu(|G|(- |GI) ™) |U + AU,

where stril(-) and triu(-) denote, respectively, the strictly lower triangular part and
the upper triangular part of their matriz arguments. 0

The normwise bounds (9.27) imply that x(A) = [|[L7}2|JU}|2]|A]2 is an
upper bound for the condition numbers of L and U under normwise perturbations.
We have

K2(A) < x(A) < min{ka(L), k2 (U)}x2(A),

and the ratio x(A4)/k2(A) can be arbitrarily large (though if partial pivoting is
used then ko (L) < n2771).

The componentwise bounds in Theorem 9.15 are a little unsatisfactory in that
they involve the unknown matrices AL and AU, but we can set these terms to
zero and obtain a bound correct to first order.

9.12. Rank-Revealing LU Factorizations

In many applications it is useful to have a factorization of a matrix that “reveals
the rank”. In exact arithmetic, a factorization produced by GE with pivoting is
certainly rank-revealing if it has the form

r |Lin O U Upp| =
PA = 3

with L;; and U;; nonsingular. It is easy to see that GE without pivoting or with
partial pivoting does not in general produce such a factorization, but GE with rook
pivoting or complete pivoting does. Formulating a definition of rank-revealing LU
factorization for matrices that are not exactly rank-deficient is nontrivial, and there
are several possible approaches. We will use the general definition of Demmel et
al. [323, 1999] that a rank-revealing decomposition (RRD) of A € R™*" is a
factorization A = XDYT, where X € R™*", D € R™*", and Y € R™*", with
r < min(m,n), D diagonal and nonsingular, and X and Y well conditioned. An
RRD therefore concentrates the rank deficiency and ill condition of A into the
diagonal matrix D. The existence of an RRD is clear, because the SVD is one (see
§6.4).

Our interest here is in to what extent LU factorization with pivoting produces
an RRD. If PAQ = LU is an LU factorization with pivoting and A is nonsingular
(but possibly ill conditioned) then we can take X = L, D = diag(U) and YT =
D~'U. With no pivoting or with partial pivoting, Y7 can be an arbitrary upper
triangular matrix and so an RRD is not obtained in general. With rook pivoting or
complete pivoting X and Y7 are both unit triangular with off-diagonal elements
bounded by 1 and hence

Koo (X), Keo(Y) < n2n 1,

9.13 HISTORICAL PERSPECTIVE 183

Moreover, in practice X and Y tend to be much better conditioned than these
bounds suggest. Therefore GE with rook pivoting or complete pivoting is a means
of computing an RRD, but with the remote possibility of failing to satisfy the
definition by factors of order 2™. This worst case is achievable. For the matrix
A(0) = Un(0)TU,(8), where U,(6) is the Kahan matrix in (8.11), for small § > 0
we have r = n and #2(X) = k2(Y) =~ 2"~ 1,

Pan [914, 2000] shows the existence of a (guaranteed) RRD based on LU factor-
ization and gives an algorithm for computing one that begins by computing an LU
factorization with complete pivoting.

9.13. Historical Perspective

GE was the first numerical algorithm to be subjected to rounding error analysis, so
it is instructive to follow the development of the error analysis from its beginnings
in the 1940s.

In the 1940s there were three major papers giving error analyses of GE. Hotelling
(639, 1943] presented a short forward error analysis of the LU factorization stage
of GE. Under the assumptions that |a;;| < 1 and |b;| < 1 for all ¢ and j and
that the pivots are all of modulus unity, Hotelling derives a bound containing a
factor 4»~! for the error in the elements of the reduced upper triangular system.
Hotelling’s work was quoted approvingly by Bargmann, Montgomery, and von
Neumann [64, 1946], who dismiss elimination methods for the solution of a linear
system Az = b as being numerically unstable. Instead, they recommend compu-
tation of A~! via the Newton-Schulz iteration described in §14.5 (which was also
discussed by Hotelling). In one paragraph they outline the alleged shortcomings
of elimination methods as follows:

In the elimination method a series of n compound operations is per-
formed each of which depends on the preceding. An error at any stage
affects all succeeding results and may become greatly magnified; this
explains roughly why instability should be expected. It should be no-
ticed that at each step a division is performed by a number whose size
cannot be estimated in advance and which might be so small that any
error in it would be greatly magnified by division. In fact such small
divisors must occur if the determinant of the matrix is small and may
occur even if it is not ... Another reason to expect instability is that
once the variable z, is obtained all the other variables are expressed
in terms of it.

As Wilkinson [1242, 1974, p.- 354] notes of this paragraph, “almost every statement
in it is either wrong or misleading”.

Hotelling’s result led to general pessimism about the practical effectiveness of
GE for solving large systems of equations. Three papers published later in the
same decade, as well as growing practical experience with the method, helped to
restore confidence in GE.

Goldstine [499, 1972, p. 290] says of his discussions with von Neumann:

We did not feel it reasonable that so skilled a computer as Gauss would
have fallen into the trap that Hotelling thought he had noted ... Von

184 LU FACTORIZATION AND LINEAR EQUATIONS

Neumann remarked one day that even though errors may build up
during one part of the computation, it was only relevant to ask how
effective is the numerically obtained solution, not how close were some
of the auxiliary numbers, calculated on the way to their correct coun-
terparts. We sensed that at least for positive definite matrices the
Gaussian procedure could be shown to be quite stable.

von Neumann and Goldstine [1200, 1947] subsequently gave a long and difficult
rigorous fixed-point error analysis for the inversion of a symmetric positive definite
matrix A via GE. They showed that the computed inverse X satisfies | AX —I||2 <
14.2n%ury(A). Parlett [925, 1990] explains that “the joy of this result was getting a
polynomial in n, and the pain was obtaining 14.2, a number that reflects little more
than the exigencies of the analysis.” Wilkinson [1239, 1971] gives an interesting
critique of von Neumann and Goldstine’s paper and points out that the residual
bound could hardly be improved using modern error analysis techniques. In a later
paper [501, 1951], Goldstine and von Neumann gave a probabilistic analysis, which
Goldstine summarizes as showing that “under reasonable probabilistic assumptions
the error estimates of the previous paper could be reduced from a proportionality
of n? to n” [499, 1972, p. 291].

In his 1970 Turing Award Lecture [1240, 1971]|, Wilkinson recounts how in
the early 1940s he solved a system of 12 linear equations on a desk calculator,
obtaining a small residual. He goes on to describe a later experience:

It happened that some time after my arrival [at the National Physi-
cal Laboratory in 1946], a system of 18 equations arrived in Mathe-
matics Division and after talking around it for some time we finally
decided to abandon theorizing and to solve it ... The operation was
manned by Fox, Goodwin, Turing, and me, and we decided on Gaussian
elimination with complete pivoting ... Again the system was mildly
ill-conditioned, the last equation had a coefficient of order 10™* (the
original coefficients being of order unity) and the residuals were again
of order 10719, that is of the size corresponding to the exact solution
rounded to ten decimals. It is interesting that in connection with this
example we subsequently performed one or two steps of what would
now be called “iterative refinement,” and this convinced us that the
first solution had had almost six correct figures.

(Fox [439, 1987] notes that the computation referred to in this quotation took
about two weeks using desk computing equipment!) In a subsequent paper, Fox,
Huskey, and Wilkinson [440, 1948] presented empirical evidence in support of GE,
commenting that “in our practical experience on matrices of orders up to the
twentieth, some of them very ill-conditioned, the errors were in fact quite small”.

The experiences of Fox, Huskey, and Wilkinson prompted Turing to write a
remarkable paper “Rounding-off errors in matrix processes” [1166, 1948]. In this
paper, Turing made several important contributions. He formulated the LU (ac-
tually, the LDU) factorization of a matrix, proving the “if” part of Theorem 9.1
and showing that GE computes an LDU factorization. He introduced the term
“condition number” and defined two matrix condition numbers, one of which is
n~!N(A)N(A~1), where N(A) = ||A| , the “N-condition number of A”. He used

9.13 HisTORICAL PERSPECTIVE 185

Table 9.2. Times for solution of a linear system of order n.

Machine Year n Time Reference
Logarithm tables c. 1884 29 ° 7 weeks (1076, 1995]
Desk computing equipment c. 1946 18 2 weeks (439, 1987]
Harvard Mark 1 1947 10 45 minutes b

IBM 602 Calculating Punch 1949 10 4 hours (1195, 1949)
Pilot ACE 1951 17 over 3 hours [1254, 1958]
Pilot ACE® 1954 30 13 mins (1254, 1958]
ACE 1958 30 5seconds [1254, 1958]

EDSAC 2 1960 31 4 seconds (83, 1960]

EDSAC 2 ¢ 1960 100 7 minutes (83, 1960]

¢Symmetric positive definite system.

5[142, 1948, p. 27, (552, 1948, p. 336].
¢With magnetic drum store.

4Using magnetic tape for auxiliary storage.

the word “preconditioning” to mean improving the condition of a system of linear
equations (a term that did not come into popular use until the 1970s). He de-
scribed iterative refinement for linear systems. He exploited backward error ideas,
for example by noting that “the triangular resolution obtained is an exact reso-
lution of a matrix A — S, where M(S) < € (M(S) = max; ;|s;;|). Finally, and
perhaps most importantly, he analysed GEPP for general matrices and obtained
a bound for ||z — Z||c that contains a term proportional to |A71||2,. (By making
a trivial change in the analysis, namely replacing A~'b by z, Turing’s bound can
be made proportional only to ||[A7!||o.) Turing also showed that the factor 4!
in Hotelling’s bound can be improved to 2"~! and that still the bound is attained
only in exceptional cases.

In a review of Turing’s paper, Bodewig [144, 1949] described the error bounds
as “impractical” and advocated computing the residual of the computed solution
and then determining “the exact correction by solving a new system.” That an-
other researcher could miss the point of Turing’s analysis emphasizes how new the
concept of rounding error analysis was in the 1940s.

Table 9.2 shows the time for solution of linear systems by GE on some early
computing devices. The performance of modern computers on two linear system
benchmarks is summarized by Dongarra [346, 2001] in a report that is regularly
updated.

Douglas [353, 1959] presented a forward error analysis for GE applied to diag-
onally dominant tridiagonal systems arising in the solution of the heat equation
by finite differences. He concluded that the whole procedure of solving this par-
tial differential equation “is stable against round-off error”. It is surprising that
Douglas’ paper is little known, because irrespective of the fact that his analysis
can be simplified and clarified using modern techniques, his is one of the first truly
positive rounding error results to be published.

A major breakthrough in the error analysis of GE came with Wilkinson’s pi-
oneering backward error analysis, in which he proved Theorem 9.5 [1229, 1961],

186 LU FACTORIZATION AND LINEAR EQUATIONS

[1232, 1963]. Apart from its simplicity and elegance and the realistic nature of the
bounds, the main feature that distinguishes Wilkinson’s analysis from the earlier
error analyses of GE is that it bounds the normwise backward error rather than
the forward error.

Wilkinson had been aware of the properties of the growth factor for partial
pivoting long before developing his backward error analysis. In a 1954 paper [1225,
1954] he noted that

After m reductions the largest element is at most 2™ times as large
as the largest original coefficient. It is possible to construct sets in
which this factor is achieved but in practice an increase seldom takes
place; more frequently the coefficients become progressively smaller,
particularly if the equations are ill-conditioned.

This quote summarizes most of what we know today!

Four of the first textbooks to incorporate Wilkinson’s analysis were those of Fox
(436, 1964, pp. 161-174], Isaacson and Keller [667, 1966], Wendroff [1215, 1966],
and Forsythe and Moler [431, 1967, Chap. 21]. Fox gives a simplified analysis for
fixed-point arithmetic under the assumption that the growth factor is of order 1.
Forsythe and Moler give a particularly readable backward error analysis that has
been widely quoted.

Wilkinson’s 1961 result is essentially the best that can be obtained by a norm-
wise analysis. Subsequent work in error analysis for GE has mainly been concerned
with bounding the backward error componentwise, as in Theorems 9.3 and 9.4. We
note that Wilkinson could have given a componentwise bound for the backward
perturbation AA, since most of his analysis is at the element level.

Chartres and Geuder [223, 1967] analyse the Doolittle version of GE. They
derive a backward error result (A + AA)Z = b, with a componentwise bound on
AA; although they do not recognize it, their bound can be written in the form
|AA| < cqulLI[D]

Reid [979, 1971] shows that the assumption in Wilkinson’s analysis that par-
tial pivoting or complete pivoting is used is unnecessary. Without making any
assumptions on the pivoting strategy, he derives for LU factorization the result
LU = A+ AA, |Aa;;| < 3.01min(i — 1, j)umax, |ag-c)|. Again, this is a com-
ponentwise bound. Erisman and Reid [393, 1974] note that for a sparse matrix,
the term min(¢ — 1,7) in Reid’s bound can be replaced by m;;, where m;; is the
number of multiplications required in the calculation of I;; (i > j) or u;; (¢ < j).

de Boor and Pinkus (300, 1977] give the result stated in Theorem 9.4. They
refer to the original German edition [1085, 1972] of (1086, 1980] for a proof of
the result and explain several advantages to be gained by working with a compo-
nentwise bound for AA, one of which is the strong result that ensues for totally
nonnegative matrices. A result very similar to Theorem 9.4 is proved by Saut-
ter [1012, 1978].

Skeel [1040, 1979] carried out a detailed componentwise error analysis of GE
with a different flavour to the analysis given in this chapter. His aim was to under-
stand the numerical stability of GE (in a precisely defined sense) and to determine
the proper way to scale a system by examining the behaviour of the backward
and forward errors under scaling (see §9.8). He later used this analysis to de-

9.14 NOTES AND REFERENCES 187

rive important results about fixed precision iterative refinement (see Chapter 12).
Skeel’s work popularized the use of componentwise backward error analysis and
componentwise perturbation theory.

The “|L||U|” componentwise style of backward error analysis for GE has been
well known for some time, as evidenced by its presence in the textbooks of Conte
and de Boor [264, 1980], Golub and Van Loan [509, 1996] (also the 1983 first
edition), and Stoer and Bulirsch [1086, 1980].

Forward error analyses have also been done for GE. The analyses are more com-
plicated and more difficult to interpret than the backward error analyses. Olver
and Wilkinson [906, 1982] derive a posteriori forward error bounds that require the
computation of A~1. Further results are given in a series of papers by Stummel
[1096, 1982], [1097, 1985), [1098, 1985], (1099, 1985)].

9.14. Notes and References

A variant of GE was used by the Chinese around the first century AD; the Jiu
Zhang Suanshu (Nine Chapters of the Mathematical Art) contains a worked ex-
ample for a system of five equations in five unknowns [680, 1991, pp. 156-177],
(776, 1989).

Gauss, who was a great statistician and numerical analyst, developed his elim-
ination method as a tool to help him prove results in linear regression theory. The
first published appearance of GE is in his Theoria Motus (1809). Stewart [1076,
1995) gives a survey of Gauss’s work on solving linear systems; see also the after-
word in (463, 1995).

The traditional form of GE, as given at the start of this chapter, can be ex-
pressed algorithmically as

for k=1:n
forj=k+1in
fori=k+1:n
aij = aij — (aik/akk)ar;
end
end
end

This is identified as the kji form of GE. Altogether there are six possible or-
derings of the three loops. Doolittle’s method (Algorithm 9.2) is the ijk or jik
variant of Gaussian elimination. The choice of loop ordering does not affect the
stability of the computation, but can greatly affect the efficiency of GE on a
high-performance computer. For more on the different loop orderings of GE see
Chapter 13; Dongarra, Gustavson, and Karp [344, 1984]; and the books by Don-
garra, Duff, Sorensen, and van der Vorst [349, 1998] and Golub and Van Loan [509,
1996).

This chapter draws on the survey paper by Higham [593, 1990]. Theorems 9.7
and 9.8 are from Higham and Higham [616, 1989).

Myrick Hascall Doolittle (1830-1913) was a “computer of the United States
coast and geodetic survey” [402, 1987]. Crout’s method was published in an engi-
neering journal in 1941 [281, 1941].

188 LU FACTORIZATION AND LINEAR EQUATIONS

GE and its variants were known by various descriptive names in the early days
of computing. These include the bordering method, the escalator method (for
matrix inversion), the square root method (Cholesky factorization), and pivotal
condensation. A good source for details of these methods is Faddeeva [399, 1959).

In a confidential 1948 report that “covers the general principles of both the
design of the [Automatic Computing Engine] and the method of programming
adopted for it”, Wilkinson gives a program implementing GE with partial pivoting
and iterative refinement {1224, 1948, p. 111|. This was probably the first such
program to be written—and for a machine that had not yet been built!

The terms “partial pivoting” and “complete pivoting” were introduced by
Wilkinson in [1229, 1961]. The pivoting techniques themselves were in use in
the 1940s and it is not clear who, if anyone, can be said to have invented them;
indeed, von Neumann and Goldstine [1200, 1947, §4.2] refer to complete pivoting
as the “customary procedure”.

Complete pivoting is currently used in several situations where the benefits it
brings clearly outweigh the extra cost. It is used in LAPACK routine xLASY2 for
solving Sylvester equations of dimensions 1 or 2 (see §16.6.1 and the solution to
Problem 16.4) and in certain computations involving the generalized Schur decom-
position. It is also used for computing a rank-revealing decomposition (see §9.12),
for example as a first step in computing an accurate singular value decomposition;
see Demmel et al. [323, 1999).

Rook pivoting for nonsymmetric matrices was introduced by Neal and Poole
in [880, 1992]; see also [947, 2000]. Related pivoting strategies for symmetric in-
definite matrices were introduced earlier by Fletcher [415, 1976] and subsequently
by Ashcraft, Grimes, and Lewis [38, 1998]; see §11.1.3. Given the practical effec-
tiveness of partial pivoting it is unlikely that rook pivoting will ever gain popular
use for nonsymmetric matrices, and when the strongest possible guarantee of sta-
bility is required complete pivoting will always be preferred. Rook pivoting may
find a niche for computing rank-revealing decompositions, since it is clearly better
than partial pivoting for this purpose and no worse than complete pivoting in the
worst case. For symmetric matrices rook pivoting-like strategies have additional
advantages that make them of great practical interest; see §11.1.3.

There is a long history of published programs for GE, beginning with Crout
routines of Forsythe [425, 1960], Thacher [1134, 1961], McKeeman [836, 1962],
and Bowdler, Martin, Peters, and Wilkinson [154, 1966], all written in Algol 60
(which was the “official” language for publishing mathematical software in the
1960s and a strong competitor to Fortran for practical use at that time). The GE
routines in LAPACK are the latest in a lineage beginning with the Fortran rou-
tines decomp and solve in Forsythe and Moler’s book [431, 1967], and continuing
with routines by Moler [860, 1972], [861, 1972] (which achieve improved efficiency
in Fortran by accessing arrays by column rather than by row), Forsythe, Mal-
colm, and Moler [430, 1977] (these routines incorporate condition estimation—see
Chapter 15), and LINPACK (341, 1979).

LU factorization of totally nonnegative matrices has been investigated by Cryer
(283, 1973], [284, 1976], Ando [26, 1987], and de Boor and Pinkus [300, 1977]. It
is natural to ask whether we can test for total nonnegativity without computing
all the minors. The answer is yes: for an n x n matrix total nonnegativity can be

9.14 NOTES AND REFERENCES 189

tested in O(n3) operations, by testing the signs of the pivots in suitable elimination
schemes, as shown by Cryer [284, 1976] and Gasca and Pefia [461, 1992]. The
latter paper employs Neville (pairwise) elimination (see §9.9). Note the analogy
with positive definiteness, which holds for a symmetric matrix if and only if all the
pivots in GE are positive. For an insightful survey of totally nonnegative matrices
see Fallat [400, 2001].

The dilemma of whether to define the growth factor in terms of exact or com-
puted quantities is faced by all authors; most make one choice or the other, and go
on to derive, without comment, bounds that are strictly incorrect. Theorem 9.9,
for example, bounds the exact growth factor; the computed one could conceivably
violate the bound, but only by a tiny relative amount. van Veldhuizen [1184, 1977]
shows that for a variation of partial pivoting that allows either a row or column
interchange at each stage, the growth factor defined in terms of computed quanti-
ties is at most about (1 +3nu)2" 1, compared with the bound 2! for the exact
growth factor.

The idea of deriving error bounds for GE by analysing the equations obtained
by solving A = LU is exploited by Wilkinson {1241, 1974], who gives a general
analysis that includes Cholesky factorization. This paper gives a concise summary
of error analysis of factorization methods for linear equations and least squares
problems.

Various authors have tabulated growth factors in extensive tests with random
matrices. In tests during the development of LINPACK, the largest value observed
was pjy = 23, occurring for a random matrix of 1s, 0s, and —1s [341, 1979, p. 1.21].
Macleod [803, 1989] recorded a value pf,; = 35.1, which occurred for a symmetric
matrix with elements from the uniform distribution on [—1,1]. In one MATLAB
test of 100,000 matrices of dimension 100 from the normal N(0, 1) distribution, I
found the largest growth factor to be pf = 20.12.

Gould [513, 19g1] used the optimization LANCELOT [263, 1992] to maximize
the nth pivot for complete pivoting as a function of about n3/3 variables compris-
ing the intermediate elements a,(-;c) of the elimination; constraints were included
that normalize the matrix A, describe the elimination equations, and impose the
complete pivoting conditions. Gould’s package found many local maxima, and
many different starting values had to be tried in order to locate the matrix for
which p{3 > 13. In an earlier attempt at maximizing the growth factor, Day and
Peterson [299, 1988] used a problem formulation in which the variables are the n?
elements of A, which makes the constraints and objective function substantially
more nonlinear than in Gould’s formulation. Using the package NPSOL [484,
1986], they obtained “largest known” growth factors for 5 < n < 7.

Theoretical progress into understanding the behaviour of the growth factor for
complete pivoting has been made by Day and Peterson [299, 1988], Puschmann
and Cortés [960, 1983], Puschmann and Nordio [961, 1985, and Edelman and
Mascarenhas (382, 1995).

Probabilistic error analysis for GE is given by Barlow and Bareiss [73, 1985].
Yeung and Chan [1265, 1997] give a probabilistic analysis of GE without pivoting,
obtaining the distributions of the entries of L and U for matrices from the normal
N(0, 1) distribution.

Barlow and Zha [77, 1998] consider an alternative definition of growth factor,

190 LU FACTORIZATION AND LINEAR EQUATIONS

pn = maxg ||A®)||2/||All2. They show that the maximum value of this growth
factor for partial pivoting is about 2"/3 and that the maximum is attained at an
orthogonal matrix.

A novel alternative to partial pivoting for stabilizing GE is proposed by Stew-
art 1066, 1974]. The idea is to modify the pivot element to make it suitably large,
and undo this rank one change later using the Sherman-Morrison formula. Stew-
art gives error analysis that bounds the backward error for this modified form of
GE.

Wilkinson proved Theorem 9.9 for matrices diagonally dominant by columns
[1229, 1961, pp. 288-289]. Theorem 9.10 is proved in the same paper. That p, < 2
for matrices diagonally dominant by rows does not appear to be well known, but
it is proved by Wendroff [1215, 1966, pp. 122-123], for example.

In Theorem 9.9 it is assumed that A is nonsingular. It has long been known
(and frequently rediscovered) that diagonal dominance provides sufficient condi-
tions for nonsingularity: if a matrix is diagonally dominant with strict inequalities
in all the defining inequalities, or if it is irreducible and at least one of the in-
equalities is strict, then the matrix is nonsingular [908, 1972, Thm. 6.2.6], [1190,
1976).

The results in §9.6 for tridiagonal matrices are taken from Higham [589, 1990].
Another method for solving tridiagonal systems is cyclic reduction, which was de-
veloped in the 1960s [190, 1970). Error analysis given by Amodio and Mazzia [18,
1994] shows that cyclic reduction is normwise backward stable for diagonally dom-
inant tridiagonal matrices.

The chapter “Scaling Equations and Unknowns” of Forsythe and Moler [431,
1967] is a perceptive, easy-to-understand treatment that is still well worth reading.
Early efforts at matrix scaling for GE were directed to equilibrating either just the
rows or the rows and columns simultaneously (so that all the rows and columns
have similar norms). An algorithm with the latter aim is described by Curtis and
Reid [286, 1972]. Other important references on scaling are the papers by van der
Sluis [1177, 1970] and Stewart [1069, 1977], which employ normwise analysis, and
those by Skeel [1040, 1979, [1042, 1981], which use componentwise analysis.

Much is known about the existence and stability of LU factorizations of M-
matrices and related matrices. A is an H-matrix if the comparison matrix M (A)
(defined in (8.7)) is an M-matrix. Funderlic, Neumann, and Plemmons [449, 1982]
prove the existence of an LU factorization for an H-matrix A that is generalized
diagonally dominant, that is, DA is diagonally dominant by columns for some
nonsingular diagonal matrix D; they show that the growth factor satisfies p, <
2 max; |d;;|/ min; |di;|. Neumann and Plemmons [886, 1984] obtain a growth factor
bound for an inverse of an H-matrix. Ahac, Buoni, and Olesky [8, 1988] describe
a novel column-pivoting scheme for which the growth factor can be bounded by n
when A is an H-matrix; for more general related work see Pefia [933, 1998).

The normwise bounds in Theorem 9.15 are due to Barrlund [81, 1991] and
the componentwise ones to Sun [1103, 19g2]. Similar bounds are given by Stew-
art (1075, 1993] and Sun [1104, 1992]. Perturbation bounds that can be much
smaller than the normwise one in Theorem 9.15 are obtained by Chang and Paige
[218, 1998] and Stewart [1078, 1997].

Interval arithmetic techniques (see §26.4) are worth considering if high accuracy

9.14 NOTES AND REFERENCES 191

Table 9.3. Records for largest dense linear systems solved (dimension n).

Year n Computer Time
1991 55, 296 Connection Machine CM-2 44 days
1992/3 75,264 Intel iPSC/860 22 days
1994 76,800 Connection Machine CM-5 4.1 days
1995 128, 600 Intel Paragon ~ 1 hour
1996 138,240 Hitachi SR2201/1024 2.2 hours
1997 235,000 Intel ASCI Red 1.8 hours
1998 259,200 SGI T3E1200 3.6 hours
1999 431,344 IBM ASCI Blue 6.9 hours
2000 518,096 IBM ASCI White 3.6 hours

2001 525,000 Compaq AlphaServer SC ES45 6.6 hours

or guaranteed accuracy is required when solving a linear system. We mention
just two papers, those by Demmel and Kriickeberg [330, 1985] and Rump [1001,
2001], which provide very readable introductions to the subject and contain further
references.

Edelman [373, 1991], [377, 1993], [378, 1994] presents statistics and details of
applications in which large dense linear algebra problems arise. He also discusses
relevant issues such as what users expect of the computed solutions and how best
to make use of parallel computers. Table 9.3 contains “world records” for linear
systems from Edelman’s surveys and based on statistics from the TOP 500 Super-
computer Sites Web site (http://www.top500.org/ or http://www.netlib.org/
benchmark/top500.html). A practical application in which very large systems
arise is the solution of boundary integral equations, a major application being the
analysis of radar cross sections; the resulting systems have coefficient matrices that
are complex symmetric (but not Hermitian).

9.14.1. LAPACK

Driver routines xGESV (simple) and xGESVX (expert) use LU factorization with par-
tial pivoting to solve a general system of linear equations with multiple right-hand
sides. The expert driver incorporates iterative refinement, condition estimation,
and backward and forward error estimation and has an option to scale the system
AX = B to (DR'AD;")DcX = Dy' B before solution, where Dy = diag(r:) =
diag(max; |a;j|) and D¢ = diag(max; r;|a;;|); the scaling is done by the routine
xGEEQU. The LU factorization is computed by the routine xGETRF, which uses a
partitioned outer product algorithm. The expert driver also returns the quantity
| All/IIU]|, where ||A| == max;,; |ai;|, which is an estimate of the reciprocal of the
growth factor, 1/pf. A value much less than 1 signals that the condition estimate
and forward error bound could be unreliable.

The auxiliary routine xGETC2 implements LU factorization with complete piv-
oting.

For band matrices, the driver routines are xGBSV and xGBSVX, and for tridiago-
nal matrices, xGTSV and xGTSVX; they all use LU factorization with partial pivoting.

192 LU FACTORIZATION AND LINEAR EQUATIONS

Problems

9.1. (Completion of proof of Theorem 9.1.) Show that if a singular matrix A €
R™*™ has a unique LU factorization then Ay is nonsingular for k = 1:n — 1.

9.2. Define A(c) = A — oI, where 6 € R and A € R"*™. For how many values of
o, at most, does A(o) fail to have an LU factorization without pivoting?

9.3. Show that A € R™*™ has a unique LU factorization if 0 does not belong to
the field of values F(A) = {z*Az/(2*z) : 0 # z€ C" }.

9.4. State analogues of Theorems 9.3 and 9.4 for LU factorization with row and
column interchanges: PAQ = LU.

9.5. Give a 2 x 2 matrix A having an LU factorization A = LU such that |L||U| <
c|A| does not hold for any c, yet | |L||U] [l /||A]|o is of order 1.

9.6. Show that if A € R®*™ is nonsingular and totally nonnegative it has an LU
factorization A = LU with L > 0 and U > 0. (Hint: use the inequality

det(A) < det(A(1:p,1:p)) det(A(p + 1:n,p + 1:n)), p=1ln-1,

which holds for any totally nonnegative A [454, 1959, p. 100].) Deduce that the
growth factor for GE without pivoting p, = 1.

9.7. How many square submatrices, and how many rectangular submatrices, does
an n x n matrix have?

9.8. Show that if A € R™*™ is nonsingular and its inverse is totally nonnegative
then it has an LU factorization A = LU with |A| = |L||U|. (Use the fact that
if C is totally nonnegative and nonsingular then JC~1J is totally nonnegative,
where J = diag((—1)*"!) (this can be proved using determinantal identities; see
(26, 1987, Thm. 3.3]).)

9.9. Show that for GE without pivoting pn, < 1 + n|||L||U] ||lco /|| Al co-

9.10. Suppose that GE without pivoting is applied to a linear system Az = b,
where A € R™*™ is nonsingular, and that all operations are performed exactly
except for the division determining a single multiplier /;; (where ¢ > j and A =
LU), which is computed with relative error e [;; = Z;j(]. + ¢€). Evaluate the
difference z — Z between the exact and computed solutions. (The answer allows
us to see clearly the effect of a computational blunder, which could, for example,
be the result of the malfunction of a computer’s divide operation.)

9.11. Show that 8 in Theorem 9.8 satisfies

8(B) = 6 <[ﬁ _AAD — 20(A).

Hence, for g(n) defined in (9.15) and S, in (9.12), deduce a larger lower bound
than g(2n) > p5,(S2a) = (2n +1)/2.

PROBLEMS 193

9.12. Explain the errors in the following criticism of GE with complete pivoting.

Gaussian elimination with complete pivoting maximizes the pivot at
each stage of the elimination. Since the product of the pivots is the
determinant (up to sign), which is fixed, making early pivots large forces
later ones to be small. These small pivots will have large relative errors
due to the accumulation of rounding errors during the algorithm, and
dividing by them therefore introduces larger errors.

9.13. In sparse matrix computations the choice of pivot in GE has to be made
with the aim of preserving sparsity as well as maintaining stability. In threshold
pivoting, a pivot element is chosen from among those elements in column k that
satisfy !az(.:)| > TmaXm>k [agf,)c|, where T € (0,1] is a parameter (see, for example,
Duff, Erisman, and Reid [360, 1986, §5.4]). Show that for threshold pivoting

mlax|al(-;c)1 < (1 +rhw m?x|aij|,

where p; is the number of nonzero entries in the jth column of U. Hence obtain
a bound for p,.

9.14. Let A € R™"*"™ be pre-pivoted for GEPP, that is, GEPP requires no row
interchanges when applied to A. Show that GEPP computes the same LU factor-
ization as (a) the first method described in §9.9 and (b) pairwise pivoting, with the
natural pivoting strategy that ensures the multipliers are bounded by 1, applied
to ITA, where IT = I(n:—1:1,:) is the row reversal permutation matrix.

9.15. (RESEARCH PROBLEM) Obtain sharp bounds for the growth factor for GEPP
applied to (a) a matrix with lower bandwidth p and upper bandwidth ¢ (thus gen-
eralizing Theorem 9.11), and (b) a quasi-tridiagonal matrix (an n x n matrix that
is tridiagonal except for nonzero (1,n) and (n,1) elements).

9.16. (RESEARCH PROBLEM) Explain why the growth factor for GEPP is almost
always small in practice.

9.17. (RESEARCH PROBLEM) For GE with complete pivoting what is the value of
limp_,0 g(n)/n (see (9.15))7 Is pS equal to n for Hadamard matrices?

9.18. (RESEARCH PROBLEM) Let g(n) be defined for GE with rook pivoting anal-
ogously to (9.15). Try to obtain the exact value of g(n) for n < 4, say (cf. the
bounds for complete pivoting on page 169), and to obtain lower bounds valid for
all n. All that is currently known is the bound (9.16) and a slightly smaller im-
plicitly defined bound from which it is derived in {435, 1997], together with the
following lower bounds found by direct search (as in §26.1):

n | 2 3 4 5
lower bound | 2 (exact) 2.9 4.16 5.36

Chapter 10
Cholesky Factorization

The matrix of that equation system is negative definite—which is a
positive definite system that has been multiplied through by —1.
For all practical geometries the common finite difference

Laplacian operator gives rise to these,

the best of all possible matrices.

Just about any standard solution method will succeed,

and many theorems are available for your pleasure.

— FORMAN S. ACTON, Numerical Methods That Work (1970)

Many years ago we made out of half a dozen transformers

a simple and rather inaccurate machine for

solving simultaneous equations—the solutions being

represented as flux in the cores of the transformers.

During the course of our experiments we

set the machine to solve the equations—

X+Y+2Z2=1

X+Y+2Z2=2

X+Y+2Z2=3

T he machine reacted sharply—it blew the main fuse and put all the lights out.

— B. V. BOWDEN, The Organization of a Typical Machine (1953)

There does seem to be some misunderstanding about the
purpose of an a priori backward error analysis.

All too often, too much attention is paid

to the precise error bound that has been established.

The main purpose of such an analysis is either to

establish the essential numerical stability of an algorithm or to
show why it is unstable and in doing so to

expose what sort of change is necessary to make it stable.

T he precise error bound is not of great importance.

— J. H. WILKINSON, Numerical Linear Algebra on Digital Computers (1974)

195

196 CHOLESKY FACTORIZATION

10.1. Symmetric Positive Definite Matrices

Symmetric positive definiteness is one of the highest accolades to which a matrix
can aspire. Symmetry confers major advantages and simplifications in the eigen-
problem and, as we will see in this chapter, positive definiteness permits economy
and numerical stability in the solution of linear systems.

A symmetric matrix A € R**™ is positive definite if z7Az > 0 for all nonzero
z € R*. Well-known equivalent conditions to A = AT being positive definite are

e det(Ax) > 0, k = 1:n, where A, = A(l:k,1: k) is the leading principal
submatrix of order k.

e \.(A) > 0, k = 1:n, where A denotes the kth largest eigenvalue.

The first of these conditions implies that A has an LU factorization, A = LU (see
Theorem 9.1). Another characterization of positive definiteness is that the pivots
in LU factorization are positive, since uxr = det(Ax)/ det(Ax—1). By factoring out
the diagonal of U and taking its square root, the LU factorization can be converted
into a Cholesky factorization: A = RTR, where R is upper triangular with positive
diagonal elements. This factorization is so important that it merits a direct proof.

Theorem 10.1. If A € R"*™is symmetric positive definite then there is a unique
upper triangular R € R™*™ with positive diagonal elements such that A = RTR.

Proof. The proof is by induction. The result is clearly true for n = 1. Assume
it is true for n — 1. The leading principal submatrix 4,-; = A(l:n—1,1:n— 1)
is positive definite, so it has a unique Cholesky factorization A,_1 = RT_|R,_;.
We have a factorization

_ An—l c| _ R;I;_l 0 Rn—l Tl _. pT
A_{CT a]—[rT 5“ st oL =R (10.1)
if
RZ—IT =g (102)
rTr + ,62 = Q. (103)

Equation (10.2) has a unique solution since R,,_; is nonsingular. Then (10.3) gives
8% = a —rTr. It remains to check that there is a unique real, positive /3 satisfying
this equation. From the equation

0 < det(A) = det(RT) det(R) = det(Rn_1)*6°

we see that 32 > 0, hence there is a unique 3 > 0. 0

The proof of the theorem is constructive, and provides a way to compute the
Cholesky factorization that builds R a column at a time. Alternatively, we can
work directly from the equations

1

a;; = E TkiTkj, J =1
k=1

10.1 SYMMETRIC PoOsSITIVE DEFINITE MATRICES 197

which follow by equating (i, j) elements in A = RTR. By solving these equations in
the order (1,1), (1,2), (2,2), (1,3), (2,3), (3,3), ..., (n,n), we obtain the following
algorithm.

Algorithm 10.2 (Cholesky factorization). Given a symmetric positive definite
A € R™™ this algorithm computes the Cholesky factorization A = RTR.

forj=1:n
fori=1:5-1
i—1
Tij = (@ij — 2 p—y TkiTkj)/Tii
end
rj5 = (aj; — Zk 1 Tk])l/2
end

Cost: n3/3 flops (half the cost of LU factorization).

As for Gaussian elimination (GE), there are different algorithmic forms of Chol-
esky factorization. Algorithm 10.2 is the jik or “sdot” form. We describe the kij,
outer product form in §10.3.

Given the Cholesky factorization A = RTR, a linear system Az = b can be
solved via the two triangular systems RTy = b and Rz = y.

If we define D = diag(r%) then the Cholesky factorization A = RTR can
be rewritten as A = LDLT, where L = RT diag(r;;)~! is unit lower triangular.
The LDLT factorization is sometimes preferred over the Cholesky factorization
because it avoids the need to compute the n square roots that determine the r;;.
The LDLT factorization is certainly preferred for solving tridiagonal systems, as
it requires n fewer divisions than Cholesky factorization in the substitution stage.
All the results for Cholesky factorization in this chapter have analogues for the
LDLT factorization. Block LDLT factorization for indefinite matrices is discussed
in §11.1.

10.1.1. Error Analysis

Error bounds for Cholesky factorization are derived in a similar way to those for
LU factorization. Consider Algorithm 10.2. Using Lemma 8.4 we have

[

Qij — E TkiTkj

k=1

i
< > [PkillFil. (10.4)

k=1

From a variation of Lemma 8.4 in which the division is replaced by a square root
(see Problem 10.3), we have

J Jj
~2 ~2
}ajj - E Tkj} < Vi1 E Tkj-
k=1 k=1
A backward error result is immediate.

Theorem 10.3. If Cholesky factorization applied to the symmetric_positive defi-
nite matric A € R™™ runs to completion then the computed factor R satisfies

RTR=A+AA, |AA| <, ,|BT)|R. O (10.5)

198 CHOLESKY FACTORIZATION

Theorem 10.4. Let A € R™*™ be symmetric positive definite and suppose Cholesky
factorization produces a computed factor R and a computed solution T to Az =b.
Then R

(A+AAE =5, |AA|< 300 [BTIIRI (10.6)

Proof. The proof is analogous to the proof of Theorem 9.4. 0

These results imply that Cholesky factorization enjoys perfect normwise back-
ward stability. The key inequality is (using Lemma 6.6)

IRT{IRI |2 = [1R 3 < nllRI; = n|Als,
whose analogue for the computed R is, from (10.5),
IHRTI[R] |2 < n(1 = nyns1) " HIAll2-
Thus (10.6) implies
AAllz < [[1AAlll2 < Yansa1n(l = n¥npr) Al < 4n(3n+ Duf|All2, (10.7)

where for the last inequality we have assumed that max((3n + 1)u, ny,,,) < 1/2.
Another indicator of stability is that the growth factor for GE is exactly 1 (see
Problem 10.4). It is important to realize that the multipliers can be arbitrarily
large (consider, for example, [9; g] as § — 0). But, remarkably, for a positive
definite matrix the size of the multipliers has no effect on stability.

Note that the perturbation AA in (10.6) is not symmetric, in general, because
the backward error matrices for the triangular solves with R and RT are not the
transposes of each other. For conditions guaranteeing that a “small” symmetric
AA can be found, see Problem 7.12.

The following rewritten version of Theorem 10.3 provides further insight into

Cholesky factorization.

Theorem 10.5 (Demmel). If Cholesky factorization applied to the symmetric pos-
itive definite matric A € R™ ™ runs to completion then the computed factor R
satisfies R

RTR = A+ AA, [AAl < (1= 701) MYppaddt,

1/2

it C

where d; = a

Proof. Theorem 10.3 shows that RTR = A + AA with [AA| < 7n+l|§T|]§|.

Denoting by 7; the ith column of Eﬁ, we have
IFill = 717 = ais + Dais < @i + v, 1T TR

so that ||7:]|2 < (1 — 4,+1) ‘ai;- Then, using the Cauchy-Schwarz inequality,
FI75] < IFillliFille < (1= ynas) " aaais)?,

giving L
IRT||R| < (1= 7,41) " ddT (10.8)

10.1 SYMMETRIC POSITIVE DEFINITE MATRICES 199

and the required bound for AA. 0

Standard perturbation theory applied to Theorem 10.4 yields a bound of the
form ||z — Z||/||z|| € cnur(A) + O(u?). However, with the aid of Theorem 10.5
we can obtain a potentially much smaller bound. The idea is to write A= DHD
where D = diag(A)'/?, so that H has unit diagonal. van der Sluis’s result (Corol-
lary 7.6) shows that

ko(H) <n_ min ko(FAF), (10.9)
F diagonal
so D is nearly a condition-minimizing diagonal scaling. It follows that ko(H) <
nke(A) and that ko(H) < ka(A) is possible if A is badly scaled. Note that
1 < ||H||2 £ n, since H is positive definite with h; = 1.

Theorem 10.6 (Demmel, Wilkinson). Let A= DHD € R™*"™ be symmetric pos-
itive definite, where D = diag(A)Y/2, and suppose Cholesky factorization success-
fully produces a computed solution T to Az = b. Then the scaled error D(z —)
satisfies

[D(z —Z)|z . _ro(H)e

[Dzlz = 1— ro(H)E’ (10.10)

where e = n(1 — ’7n+1)_1’73n+1'

Proof. Straightforward analysis shows that (cf. the proof of Theorem 9.4)
(A+ AA)Z = b, where

AA = AA; + A R+ RT A, + A4,

with |AA;1| € (1 =7Yp+1) *Yns1dd7 (by Theorem 10.5) and |A;] < Y| RT|, 42| <
~n|R|- Scaling with D, we have

(H+ D 'AAD™'\Dz = D™'b,
and standard perturbation theory gives

ID(z—2)ll2 _ _w2(H)|DT*AAD o
IDzll, = 1—ko(H)||D-TAAD-Y|y

But, using (10.8) and || D~'ddTD~!||2 = ||eeT||2 = n, we have

|D*AAD™!|; £ | D'dd" D
1- Tn+1
+ (29 + 72 ID7HRT||RID |2
< (1= Y1) Mantls
using Lemma 3.3, which yields the result. O

Care needs to be exercised when interpreting bounds that involve scaled quan-
tities, but in this case the interpretation is relatively easy. Suppose that H is
well conditioned and k2 (D) is large, which represents the artificial ill conditioning
that the DH D scaling is designed to clarify. The vector Dxr = H~'D~1b is likely

200 CHOLESKY FACTORIZATION

to have components that do not vary much in magnitude. Theorem 10.6 then
guarantees that we obtain the components of Dz to good relative accuracy and
this means that the components of z (which will vary greatly in magnitude) are
obtained to good relative accuracy.

So far, our results have all contained the proviso that Cholesky factorization
runs to completion—in other words, the results assume that the argument of the
square root is always positive. Wilkinson [1236, 1968] showed that success is
guaranteed if 20n%/2k5(A)u < 1, that is, if 4 is not too ill conditioned. It would
be nice to replace A in this condition by H, where A = DH D. Justification for
doing so is that Algorithm 10.2 is scale invariant, in the sense that if we scale
A «- FAF, where F is diagonal, then R scales to RF; moreover, if F' comprises
powers of the machine base, then even the rounding errors scale according to F'.
The following theorem gives an appropriate modification of Wilkinson’s condition.

Theorem 10.7 (Demmel). Let A= DHD € R™*" be symmetric positive definite,
where D = diag(A)Y2. If Amin(H) > nv,41/(1—1n41) then Cholesky factorization
applied to A succeeds (barring underflow and overflow) and produces a nonsingular
R. If Amin(H) < —ny, 1 /(1 = ,41) then the computation is certain to fail.

Proof. The proof is by induction. Consider Algorithm 10.2. The first stage
obviously succeeds and gives 71; > 0, since a;; > 0. Suppose the algorithm has
successfully completed k — 1 stages, producing a nonsingular ﬁk_l, and consider
equations (10.1)—(10.3) with n replaced by k. The kth stage can be completed,
but may give a pure imaginary 3 (it will if fi(a—777) < 0). However, in the latter
event, the error analysis of Theorem 10.5 is still valid! Thus we obtain ﬁk satisfying
Eiﬁk = Ak + Adx, |AAk| < (1= Y1) ™ Veq1didi » Where di = [‘1%2,) 11922]T
Now, with Dy = diag(dx), we have

Amin (Dg ' (Ak + AAR) DY) n(He + D' AAD;Y)

Ami
)\ (Hk) - ”DklAAka1”2
Am

>
Ye+1 T
> Amin (Hi) = 7———|lee” [|2
1- Y41
Z /\min(H) — k__’yk;l > 0,
L= Ye4q

using the interlacing of the eigenvalues [509 1996, Thm. 8.1.7] and the condition
of the theorem. Hence D !(Ax + AAk)D is pos1t1ve definite, and therefore so is
the congruent matrix Ak + AAg, showing that Rk must be real and nonsingular,
as required to complete the induction.

If Cholesky succeeds, then, by Theorem 10.5, D~1(A + AA)D~! is positive
definite and 50 0 < Amin(H) + [[D7*AAD |2 € Amin(H) + n(1 = Ypg1) Vst
Hence if Apin(H) < —17¥,41/(1 —¥,41) then the computation must fail. O

Note that, since ||H||2 > 1, the condition for success of Cholesky factorization
can be weakened slightly to s (H)ny, /(1 —vp1) < 1.

10.2 SENSITIVITY OF THE CHOLESKY FACTORIZATION 201

10.2. Sensitivity of the Cholesky Factorization

The Cholesky factorization has perturbation bounds that are similar to those for
LU factorization, but of a simpler form thanks to the positive definiteness (||A™||,
replaces [[U~!||2||L~|2 in the normwise bounds).

Theorem 10.8 (Sun). Let A € R™**™ be symmetric positive definite with the
Cholesky factorization A = RTR and let AA be a symmetric matriz satisfy-
ing ||A1AA|l2 < 1. Then A + AA has the Cholesky factorization A + AA =
(R+ AR)T(R + AR), where

IAR|r _ 5-1/2_K2(A)e _ [1A4]lF

R, —~ 1-r(A)e [l

=2,F

Moreover, if p(|G|) < 1, where G = (R+ AR)"TAA(R + AR)™!, then
|AR| < triu(|G|(I — |G])")|R + AR|,
where triu(:) denotes the upper triangular part. 0

Note that the Cholesky factor of Ay = A(l:k, 1:k) is Rk, and s2(Ak+1) >
k2(Ax) by the interlacing property of the eigenvalues. Hence if Ax+; (and hence
A) is ill conditioned but Ay is well conditioned then R) will be relatively insensitive
to perturbations in A but the remaining columns of R will be much more sensitive.

10.3. Positive Semidefinite Matrices

If A is symmetric and positive semidefinite (zTAz > 0 for all) then a Cholesky
factorization exists, but the theory and computation are more subtle than for
positive definite A.

The questions of existence and uniqueness of a Cholesky factorization are an-
swered by the following result.

Theorem 10.9. Let A € R™*™ be positive semidefinite of rank r. (a) There
exists at least one upper triangular R with nonnegative diagonal elements such
that A = RTR. (b) There is a permutation IT such that ITTAIT has a unique
Cholesky factorization, which takes the form

OTAIT = RTR, R= [Rgl Rgz] , (10.11)

where Ryp is v X T upper triangular with positive diagonal elements.

Proof. (a) Let the symmetric positive semidefinite square root X of A have
the QR factorization X = QR with 7;; > 0. Then A = X? = X7X = RTQTQR =
RTR. (b) The algorithm with pivoting described below amounts to a constructive
proof. O

202 CHOLESKY FACTORIZATION

Note that the factorization in part (a) is not in general unique. For example,

0 0f_ 0 0 0 cosf
0 1] |cosf sinf| {0 sinf |’

For practical computations a factorization of the form (10.11) is needed, be-
cause this factorization so conveniently displays the rank deficiency. Such a factor-
ization can be computed using an outer product Cholesky algorithm, comprising
r = rank(A) stages. At the kth stage, a rank-1 matrix is subtracted from A so as
to introduce zeros into positions k: n in the kth row and column. Ignoring pivoting
for the moment, at the start of the kth stage we have

k-1 n—k+1
k—1
(k) — (oY — A _ ST k-1 0 0
A = (aij)=A4 21‘17*1- = e o A | (10.12)
1=
where rT = [0,...,0,74,...,7in). The reduction is carried one stage further by
computing
e = 1/at®
Kk = /Gy,
s = gt®) k41
kj = Op; [Tkk, J=k+1l:n,
aE;H) = az(';) — TkiTkj, L,Jj=k+Ln

Overall we have,

A=ZririT=RTR, RT =[r,...,7]

i=1

To avoid breakdown when afc’;) vanishes (or is negative because of rounding
errors), pivoting is incorporated into the algorithm as follows. At the start of the
kth stage an element al® >0 (s > k) is selected as pivot, and rows and columns
k and s of Ag, and the kth and sth elements of r;, i = 1: kK — 1, are interchanged.
The overall effect is to compute the decomposition (10.11), where the permutation
IT takes account of all the interchanges.

The standard form of pivoting is defined by

(k) (k)}
... = maX a;, .
73 k<i<n *

s = min{ jra
This is equivalent to complete pivoting in GE, since Ay is positive semidefinite
so its largest element lies on the diagonal (see Problem 10.1). We note for later
reference that this pivoting strategy produces a matrix R that satisfies (cf. Prob-
lem 19.5)
min(j,7)
> Y r? j=k+ln k=1Lr (10.13)

fatl 259
i=k

It will be convenient to denote by cp(A) := ITTAII the permuted matrix ob-
tained from the Cholesky algorithm with complete pivoting.

10.3 POSITIVE SEMIDEFINITE MATRICES 203

10.3.1. Perturbation Theory

In this section we analyse, for a positive semidefinite matrix, the effect on the
Cholesky factorization of perturbations in the matrix. This perturbation theory
will be used in the error analysis of the next section.

Throughout this section A is assumed to be an n x n positive semidefinite
matrix of rank r whose leading principal submatrix of order r is positive definite.
For k = 1: 7 we will write

k n—k

k| A A
A= 10.14
n—k !:Agé A22} (0)

and other matrices will be partitioned conformally.
We have the identity

k
k | RY 0 0
A= Ry1, Rpo)+ s 10.15
P [o Sk(A)} (10-15)

where R1; is the Cholesky factor of A1, Ri2 = RflTAlz, and
Sk(A) = Ayy — AL AT Ap,

is the Schur complement of A;; in A. Note that S,.(A) = 0, so that for k = r,
(10.15) is the (unique) Cholesky factorization of A. The following lemma shows
how Sx(A) changes when A is perturbed.

Lemma 10.10. Let E be symmetric and assume Ay; + F); is nonsingular. Then
Sk(A+ E) = S(A) + Byy — (ELW + WTErg) + WTELW + O([| E[[*), (10.16)
where W = AT Aj,.
Proof. We can expand
(A + En) 7' = A7l — A E AR + AT B A En A + O(IEP).

The result is obtained by substituting this expansion into Sk(A4 + E) = (A2 +
E32) — (A12 + E12)T(A11 + E11) "} (A12 + E13), and collecting terms. 0

Lemma 10.10 shows that the sensitivity of Sx(A) to perturbations in A is
governed by the matrix W = A}'A;,. The question arises of whether, for a
given A, the potential |W |2 magnification of E indicated by (10.16) is attain-
able. For the no-pivoting strategy, II = I, the answer is trivially “yes”, since
we can take E = [“618], with |y| small, to obtain ||Sk(A + E) — Sk(4)|l2 =
W31 Ell2 + O(||E||3). For complete pivoting, however, the answer is compli-
cated by the possibility that the sequence of pivots will be different for A + F
than for A, in which case Lemma 10.10 is not applicable. Fortunately, a mild
assumption on A is enough to rule out this technical difficulty, for small || E||2. In
the next lemma we redefine A := cp(A) in order to simplify the notation.

204 CHOLESKY FACTORIZATION

Lemma 10.11. Let A := cp(A). Suppose that
(Si(A))ll > (51(14)) L

i j=2n-—1, 1=0:r—-1 (1017)

(where So(A) = A). Then, for sufficiently small ||E||2, A+ E = cp(A + E). For
E = [0, with || sufficiently small,

00
1Sk (cp(A + E)) = Sk(A)ll2 = [WIBIIEll2 + O(IIEl3)-

Proof. Note that since A = cp(A), (10.17) simply states that there are no
ties in the pivoting strategy (since (Si(A)) 1= affllgﬂ in (10.12)). Lemma 10.10

shows that S;(A+E) = S;(4)+O(||E|2), and so, in view of (10.17), for sufficiently
small || E||2 we have

(Si(A+E))y, > (Si(A+E)),,, j=2n—i, i=0r-1

This shows that A+ E = cp(A+E). The last part then follows from Lemma 10.10.
g

We now examine the quantity |W ||z = ||A7]' A;,|l2. We show first that [|[W||
can be bounded in terms of the square root of the condition number of Aj;.

Lemma 10.12. If A, partitioned as in (10.1I4), is symmetric positive definite and
Au1 is positive definite then | AT Aralla < /1A |2l Ags 2

Proof. Write Aj'A,, = Af/2A7/*A;, and use ||A‘1/2||2 = A2, to-

gether with || A7/ A2 = || AL QAT A, 2“1/2 < || Aga|l3”*, which follows from the
fact that the Schur complement Ay, — AT, ATMA;, is pos1t1ve semidefinite. 0

Note that, by the arithmetic-geometric mean inequality \/zy < (z + y)/2
(z,y > 0), we also have, from Lemma 10.12, [|AT} A5z < (I[AT 2 + | A22]l2) /2.
The inequality of Lemma 10.12 is an equality for the positive semidefinite
matrix
aly k Ty n—k

A=
-1
In—k,k « In——k,n—k

a >0, (10.18)
where I, 4 is the p x g identity matrix. This example shows that ||W||z can be
arbitrarily large. However, for A := cp(A), ||[W||, can be bounded solely in terms
of n and k. The essence of the proof, in the next lemma, is that large elements in
A1_11 are countered by small elements in A;,. Hereafter we set k = r, the value of
interest in the following sections.

Lemma 10.13. Let A :=cp(A) and set k =r. Then

_ 1
1457 Az ll2,F < \/;(n —r)4r = 1). (10.19)

There is a parametrized family of rank-r matrices A(6) = cp(A(6)), 6 € (0,%], for
which

[[A11(6) " A12(0)|l2,F — \/%(n —-r){dar —1) as § —0.

10.3 POSITIVE SEMIDEFINITE M ATRICES 205

Proof. The proof is a straightforward computation. The matrix A(8) :=
R(6)TR(6), where

‘1 —c¢ -c —c —c —c’
1 —c -c —-Cc ... —c
R(6) = diag(1,s,...,s ") 1 : : © | eRTX,
i 1 -~ ... —c_
(10.20)
with ¢ = cosf,s = sinf. This is the r x n version of Kahan’s matrix (8.11). R
satisfies the inequalities (10.13) (as equalities) and so A(8) = cp(A(H)). 0

We conclude this section with a “worst-case” example for the Cholesky factor-
ization with complete pivoting. Let U(6) = diag(r,r — 1,...,1)R(6), where R(6)
is given by (10.20), and define the rank-r matrix C(8) = U(6)TU(6). Then C(6)
satisfies the conditions of Lemma 10.11. Also,

Wiz = [C11(8) ' Cr2()ll2 = U11(6) "' Ur2(8)l2 = || R11(8) " R12(6)l2

—>\/ (n—r)47-1) as § — 0.

Thus, from Lemma 10.11, for F = ['701 g], with |y| and 6 sufficiently small,

I+ (cp(C(O) + E))ll2 & 5(n ~)& = DIIEL

This example can be interpreted as saying that in exact arithmetic the residual
after an r-stage Cholesky factorization of a semidefinite matrix A can overestimate
the distance of A from the rank-r semidefinite matrices by a factor as large as
(n—r)(4" - 1)/3.

10.3.2. Error Analysis

In this section we present a backward error analysis for the Cholesky factorization
of a positive semidefinite matrix. An important consideration is that a matrix
of floating point numbers is very unlikely to be “exactly” positive semidefinite;
errors in forming or storing A will almost certainly render the smallest eigenvalue
nonzero, and possibly negative. Therefore error analysis for a rank-r positive
semidefinite matrix may appear, at first sight, to be of limited applicability. One
way around this difficulty is to state results for A = A + AA, where A is the
matrix stored on the computer, A is positive semidefinite of rank 7, and A4 is a
perturbation, which could represent the rounding errors in storing A, for example.
However, if the perturbation AA is no larger than the backward error for the
Cholesky factorization, then this extra formalism can be avoided by thinking of
AA as being included in the backward error matrix. Hence for simplicity, we frame
the error analysis for a positive semidefinite A.

The analysis makes no assumptions about the pivoting strategy, so A should
be thought of as the pre-permuted matrix ITTAIT.

206 CHOLESKY FACTORIZATION

Theorem 10.14. Let A be an n x n symmetric positive semidefinite matriz of
floating point numbers of rank r < n. Assume that A;; = A(l:n,1:7) is positive
definite with

Amin(I—Ill) > T’Y‘r+1/(1 - ’Y‘r+1)7 (1021)

where A1y = Dy1Hyy D1y and Dy; = diag(A11)Y2. Then, in floating point arith-
metic, the Cholesky algorithm applied to A successfully completes v stages (barring
underflow and overflow), and the computed r x n Cholesky factor R, satisfies

|A = RIR, ||z < 2rv, 1 lAl(IW]2 +1)% + O(u?), (10.22)
where W = A7 Ay,.

Proof. First, note that condition (10.21) guarantees successful completion of
the first r stages of the algorithm by Theorem 10.7.
Analysis very similar to that leading to Theorem 10.3 shows that

A+ E=R'R, + AT+D, (10.23)
where
Py AT 7/1\—7. -~ T 0 0
R.= r[Ry Riz], AUtD = o,
[11 12] nr |0 8oy
and SR N
|E| < %11 (IRT]IRo| + A1), (10.24)

Taking norms in (10.24) and using the inequality || |B| ||2 < v/rank(B) ||B]||2 from
Lemma 6.6, we obtain
I1Ell2 < Ay (FIBT 2| Br 2 + v =7 ATHD])
= Y41 (P RTR,|l2 + v/ — TIIA\(T+1)|I2)
(rld+ B = ATl 4 Va7 A7)

142 + | Ellz + nl| AT+]l2),

= Yr+1

T
< Yra T

which implies

1Bl < -2 (rAlla +] AT*D)]2). (10.25)
’Y.,-.+_1

Our aim is to obtain an a priori bound for |4 — ﬁ?ﬁ,“g It is clear from
(10.23)-(10.25) that to do this we have only to bound |[A+1)]|,. To this end, we
interpret (10.23) in such a way that the perturbation theory of §10.3.1 may be
applied.

Equation (10.23) shows that S,.1 is the true Schur complement for the matrix
A+ E and that A}; + Ey; = ﬁ:{lﬁu is positive definite. Hence we can use
Lemma 10.10 to deduce that

[AT+D g = [|18pial2 < | B2alla + 20| Evall2W iz + W3 Ell2 + O(u?)
2
<||Ell2(|W]l2 + 1)" + O(u?).

10.3 POSITIVE SEMIDEFINITE MATRICES 207

Substituting from (10.25) we find that
A2 < vy All2([W 2 + 1) + O(?).
Finally, using (10.23) and (10.25), we obtain

A~ RTR,||2 < 2ry, 0 |A]2(I1W]2 + D2+ O@?). O

Theorem 10.14 is just about the best result that could have been expected,
because the bound (10.22) is essentially the same as the bound obtained on tak-
ing norms in Lemma 10.10. In other words, (10.22) simply reflects the inherent
mathematical sensitivity of A — RTR to small perturbations in A.

We turn now to the issue of stability. Ideally, for A asdefined in Theorem 10.14,
the computed Cholesky factor R, produced after r stages of the algorithm would
satisfy o

A= RIR. |2 < caufl A2,

where ¢, is a modest constant. Theorem 10.14 shows that stability depends on
the size of |W||z = ||A7!Aj2ll2 (to the extent that ||W|. appears in a realistic
bound for the backward error).

If no form of pivoting is used then ||W||; can be arbitrarily large for fixed n
(see (10.18)) and the Cholesky algorithm must in this case be classed as unstable.
But for complete pivoting we have from Lemma 10.13 the upper bound ||W]|; <
(3(n—r)(47 —1))1/2. Thus the Cholesky algorithm with complete pivoting is stable
if r is small, but stability cannot be guaranteed, and seems unlikely in practice, if
IW||2 (and hence, necessarily, r and n) is large.

Numerical experiments show that ||[W||; is almost always small in practice
(typically less than 10) [588, 1990]. However, it is easy to construct examples
where ||W ||z is large. For example, if R is a Cholesky factor of A from complete
pivoting then let C = M(R)TM(R), where M (R) is the comparison matrix; C will
usually have a much larger value of ||W||, than A.

An important practical issue is when to terminate the Cholesky factorization
of a semidefinite matrix. The LINPACK routine xCHDC proceeds with the factor-
ization until a nonpositive pivot is encountered, that is, up to and including stage
k — 1, where k is the smallest integer for which

a® <0, i=kin (10.26)

Usually £ > r + 1, due to the effect of rounding errors.
A more sophisticated termination criterion is to stop as soon as

ISkl <€Al or &P <0, i=kin, (10.27)

for some readily computed norm and a suitable tolerance €. This criterion termi-
nates as soon as a stable factorization is achieved, avoiding unnecessary work in
eliminating negligible elements in the computed Schur complement Sy. Note that
||Sk| is indeed a reliable order-of-magnitude estimate of the true residual, since

208 CHOLESKY FACTORIZATION

Sy is the only nonzero block of A®) and, by (10.23) and (10.25), A — E’Z_lék_l =
A®) — E with || E|| = O(u) (|| All + [[A®]]).
Another possible stopping criterion is

max a® < all. (10.28)

This is related to (10.27) in that if A (pre-permuted) and Ay are positive semidef-
inite then aill) = max;j |a;;| = ||A||2, and similarly makaignagf) ~ ||Sk||2- Note
that (10.28) bounds k2(Rk—1), since if (10.28) holds first at the kth stage then,

using Theorem 8.14,

~ N ~ 1/2
K2 (Rie—1) < 711 _(al) > <12

= 0772 = Pl ~ G

Practical experience shows that the criteria (10.27) and (10.28) with € = nu
both work well, and much more effectively than (10.26) [588, 1990]. We favour
(10.28) because of its negligible cost.

10.4. Matrices with Positive Definite Symmetric Part
Any matrix A € R®*" can be written
A=As+Ax, As=(A+AT)/2, Ax=(A-AT))2,

where Ag is the symmetric part of A and Ag is the skew-symmetric part of A.
A number of results for symmetric positive definite matrices can be extended to
matrices with positive definite symmetric part or, equivalently, to matrices for
which zTAz > 0 for all # 0; these matrices are sometimes called nonsymmetric
positive definite matrices.

A matrix with positive definite symmetric part clearly has nonsingular leading
principal submatrices, and so has an LU factorization, A = LU. It can even
be shown that pivots u;; are positive. However, there is no guarantee that the
factorization is stable without pivoting, as the example [_51 i] shows. The standard
error analysis for LU factorization applies (Theorems 9.3 and 9.4), and so the
question is whether |L||U| can be suitably bounded. Golub and Van Loan [508,
1979] show that, for the exact LU factors,

ILINUF < nllAs + AR A Ak]l2. (10.29)

Let x(A) = ||Ag + AEAEIAK||2||A§1||2, which is just ky(A) when A is sym-
metric. Mathias [820, 1992} shows that “ |E|IE,I “F (involving now the computed
LU factors) is at most a factor 1 + 30un®/2x(A) times larger than the upper
bound in (10.29), and that the LU factorization (without pivoting) succeeds if
24n3/2x(A)u < 1.

These results show that it is safe not to pivot provided that the symmetric part
of A is not too ill conditioned relative to the norm of the skew-symmetric part.

10.5 NOTES AND REFERENCES 209

If A is symmetric (Ax = 0) then we recover the results for symmetric positive
definite matrices.

For complex matrices A with positive definite Hermitian part (4 + A*)/2, or
equivalently, Re z*Az > 0for all nonzero z € C, the results above can be extended.
A particular class of such matrices is those of the form

A=B+iC, B,C e R"*"™ both symmetric positive definite. (10.30)

These matrices arise in computational electrodynamics [1183, 2001]. They are
nonsingular and have an LU factorization. George, Ikramov, and Kucherov [477,
2002] show that the growth factor p, < 3, and so LU factorization without pivoting
is perfectly normwise backward stable. An even smaller bound of about 1.28 holds
when B = I, as shown in [660, 2000).

10.5. Notes and References

André-Louis Cholesky (1875-1918) was a French military officer involved in geodesy
and surveying in Crete and North Africa. His work was published posthumously
on his behalf by Benoit [103, 1924]. Biographies of Cholesky are given by Brezin-
ski [164, 1996] and in [28, 1922]. In some books his name is misspelled “Choleski”.
Discussions about Cholesky—in particular, concerning the pronunciation of his
namel--—can be found in the electronic mail magazine NA-Digest, volume 90, 1990,
issues 7, 8, 10-12, and 24.

The properties of the Cholesky factorization are intimately associated with the
properties of the Schur complement, as is apparent from some of the proofs in this
chapter. The same is true for GE in general. An excellent survey of the Schur
complement, containing historical comments, theory, and applications, is given by
Cottle [274, 1974).

For results on the Cholesky factorization in Hilbert space see Power [952, 1986).

A book by George and Liu [478, 1981] is devoted to the many practical issues in
the implementation of Cholesky factorization for the solution of sparse symmetric
positive definite systems.

There is no floating point error analysis of Cholesky factorization in Wilkinson’s
books, but he gives a detailed analysis in [1236, 1968], showing that RTR=A+
E, with ||E||2 < 2.5n%/2ul||A||,. It is unfortunate that this paper is in a rather
inaccessible proceedings, because it is a model of how to phrase and interpret an
error analysis. Meinguet [840, 1983] and Sun [1104, 1992] give componentwise
backward error bounds similar to those in Theorems 10.3 and 10.4. Kielbasiriski
[733, 1987] reworks Wilkinson’s analysis to improve the constant.

The fact that ko(H) can replace the potentially much larger kg (A) in the
forward error bound for the Cholesky method was stated informally and without
proof by Wilkinson [1236, 1968, p. 638]. Demmel [311, 1989] made this observation
precise and explored its implications; Theorems 10.5, 10.6, and 10.7 are taken
from [311, 1989).

The bounds in Theorem 10.8 are from Sun [1102, 1991], [1103, 19g2]. Similar
bounds are given by Stewart [1068, 1977], [1075, 1993], Barrlund [81, 1991}, and
Sun [1104, 1992]. More refined perturbation bounds are derived and explored
by Chang, Paige, and Stewart [220, 1996] and Stewart [1078, 1997]. Perturbation

210 CHOLESKY FACTORIZATION

results of a different flavour, including one for structured perturbations of the form
of AA in Theorem 10.5, are given by Drmaé, Omladi¢, and Veselié¢ [356, 1994].

The perturbation and error analysis of §10.3 for semidefinite matrices is from
Higham [588, 1990], wherein a perturbation result for the QR factorization with
column pivoting is also given. For an application in optimization that makes use
of Cholesky factorization with complete pivoting and the analysis of §10.3.1 see
Forsgren, Gill, and Murray [420, 1995]. An extension of Theorem 10.14 to Toep-
litz matrices is given by Stewart [1084, 1997], who shows that for these matrices
pivoting is not needed in order for ||W|| to be bounded in terms of n and r only.

Fletcher and Powell [418, 1974] describe several algorithms for updating an
LDLT factorization of a symmetric positive definite A when A is modified by a
rank-1 matrix. They give detailed componentwise error analysis for some of the
methods.

An excellent way to test whether a given symmetric matrix A is positive
(semi)definite is to attempt to compute a Cholesky factorization. This test is
less expensive than computing the eigenvalues and is numerically stable. Indeed,
if the answer “yes” is obtained, it is the right answer for a nearby matrix, whereas if
the answer is “no” then A must be close to an indefinite matrix. See Higham [583,
1988] for an application of this definiteness test. An algorithm for testing the def-
initeness of a Toeplitz matrix is developed by Cybenko and Van Loan [287, 1986],
as part of a more complicated algorithm. According to Kerr [730, 19g0], miscon-
ceptions of what is a sufficient condition for a matrix to be positive (semi)definite
are rife in the engineering literature (for example, that it suffices to check the
definiteness of all 2 x 2 submatrices). See also Problem 10.8. For some results on
definiteness tests for Toeplitz matrices, see Makhoul [807, 1991].

That pivoting is not necessary for the class of complex symmetric matrices
(10.30) was first noted by Higham [610, 1998], who also investigates the behaviour
of block LDLT factorization with the Bunch-Kaufman pivoting strategy (see §11.1)
when applied to such matrices. The proof of the growth factor bound in (610, 1998]
is incorrect; the subsequent proof that pn, < 3 in [477, 2002] is quite lengthy, and
obtaining a sharp bound for the growth factor is an open problem (see Prob-
lem 10.12).

10.5.1. LAPACK

Driver routines xPOSV (simple) and xPOSVX (expert) use the Cholesky factorization
to solve a symmetric (or Hermitian) positive definite system of linear equations
with multiple right-hand sides. (There are corresponding routines for packed stor-
age, in which one triangle of the matrix is stored in a one-dimensional array: PP
replaces PO in the names.) The expert driver incorporates iterative refinement, con-
dition estimation, and backward and forward error estimation and has an option
to scale the system AX = B to (D~*AD~Y)DX = D~!B, where D = diag(a./?).
Modulo the rounding errors in computing and applying the scaling, the scaling
has no effect on the accuracy of the solution prior to iterative refinement, in view
of Theorem 10.6. The Cholesky factorization is computed by the routine xPOTRF,
which uses a partitioned algorithm that computes R a block row at a time. The
drivers xPTSV and xPTSVX for symmetric positive definite tridiagonal matrices use

PROBLEMS 211

LDLT factorization. LAPACK does not currently contain a routine for Cholesky
factorization of a positive semidefinite matrix, but there is such a routine in LIN-
PACK (xCHDC).

Problems
10.1. Show that if A € R®*™ is symmetric positive definite then
laij| < \/aza;; for all i # j.

What does this statement imply about max; ; |a;;|?

10.2. If A is a symmetric positive definite matrix, how would you compute 27 A~1z?

10.3. Let y = (c - Zf:ll aibi)l/2 be evaluated in floating point arithmetic in any
order. Show that

k—1
P21+ Os1) =c— > asbs(1+60))),
=1

where |0%) || < v,_1 for all 4, and |0k+1] < Yoy -

10.4. Let A € R™*™ be symmetric positive definite. Show that the reduced sub-
matrix B of order n — 1 at the end of the first stage of GE is also symmetric
positive definite. Deduce that 0 < afc? < ag;c_l) <. <L a;clk) = axx and hence

that the growth factor p, = 1.

10.5. Show that the backward error result (10.6) for the solution of a symmetric
positive definite linear system by Cholesky factorization implies

(A+24)z=b, [|AAlM < ¥aps1 (1= vme1) T Al

where ||A||p = max; ; |a;;| (which is not a consistent matrix norm—see §6.2). The
significance of this result is that the bound for ||AA|m/||A|[m contains a linear
polynomial in n, rather than the quadratic that appears for the 2-norm in (10.7).

10.6. Let A = cp(A) € R™*"™ be positive semidefinite of rank 7 and suppose it
has the Cholesky factorization (10.11) with IT = I. Show that Z = [W,-I]T is a
basis for the null space of 4, where W = A 4,,.

10.7. Prove that (10.13) holds for the Cholesky decomposition with complete
pivoting.

10.8. Give an example of a symmetric matrix A € R™**" for which the leading
principal submatrices Ay satisfy det(Ax) > 0, k = 1:n, but A is not positive
semidefinite (recall that det(Ax) > 0, k = 1: n, implies that A is positive definite).
State a condition on the minors of A that is both necessary and sufficient for
positive semidefiniteness.

10.9. Suppose the outer product Cholesky factorization algorithm terminates at
the (k+1)st stage (see (10.15)), with a negative pivot in the (k+1,k+1) position.
Show how to construct a direction of negative curvature for A (a vector p such
that pTAp < 0).

212 CHOLESKY FACTORIZATION

10.10. What is wrong with the following argument? A positive semidefinite ma-
trix is the limit of a positive definite one as the smallest eigenvalue tends to zero.
Theorem 10.3 shows that Cholesky factorization is stable for a positive definite
matrix, and therefore, by continuity, it must be stable for a positive semidefinite
matrix, implying that Theorem 10.14 is unnecessarily weak (since |W||2 can be
large).

10.11. Let

A A x
A= crn
[An Azz] €

have positive definite Hermitian part. Show that the Schur complement S =
A,y — AS AT A}, also has positive definite Hermitian part. In other words, show
that GE preserves positive definiteness.

10.12. (RESEARCH PROBLEM) Investigate the sharpness of the bound p, < 3 of
[477, 2002] for matrices of the form (10.30).

Chapter 11
Symmetric Indefinite and
Skew-Symmetric Systems

Unfortunately, there is no stable scheme exactly analogous to
Gaussian elimination with partial pivoting;

one cannot construct an algorithm for which

there is a bound on the element growth of the sequence AR
when at each stage only one column of A®) s examined.

— JAMES R. BUNCH and LINDA KAUFMAN,
Some Stable Methods for Calculating Inertia and
Solving Symmetric Linear Systems (1977)

T he comparison count is much less ...

than for the complete pivoting scheme,

and in practice this fact has had a

much larger impact than originally anticipated,
sometimes cutting the execution time by about 40%.

— JAMES R. BUNCH and LINDA KAUFMAN,
Some Stable Methods for Calculating Inertia and
Solving Symmetric Linear Systems (1977)

This fixed inertia property is why skew-symmetric matrices are
easier to decompose than symmetric indefinite matrices.

— JAMES R. BUNCH, A Note on the Stable Decomposition of
Skew-Symmetric Matrices (1982)

213

214 SYMMETRIC INDEFINITE AND SKEW-SYMMETRIC SYSTEMS

A symmetric matrix A € R™" is indefinite if (z7 Az)(yT Ay) < 0 for some
z,y € R™, or, equivalently, if A has both positive and negative eigenvalues. Lin-
ear systems with symmetric indefinite coeflicient matrices arise in many applica-
tions, including least squares problems, optimization, and discretized incompress-
ible Navier—-Stokes equations. How can we solve Ax = b efficiently?

Gaussian elimination with partial pivoting (GEPP) can be used to compute
the factorization PA = LU, but it does not take advantage of the symmetry to
reduce the cost and storage. We might try to construct a factorization A = LDLT,
where L is unit lower triangular and D is diagonal. But this factorization may not
exist, even if symmetric pivoting is allowed, and if it does exist its computation
may be unstable. For example, consider

i e L | O | |

There is arbitrarily large element growth for 0 < ¢ <« 1, and the factorization does
not exist for € = 0.

For solving dense symmetric indefinite linear systems Ax = b, two types of
factorization are used. The first is the block LDLT factorization (or symmetric
indefinite factorization)

PAPT = LDILT, (11.1)

where P is a permutation matrix, L is unit lower triangular, and D is block
diagonal with diagonal blocks of dimension 1 or 2. This factorization is essentially
a symmetric block form of GE, with symmetric pivoting. Note that by Sylvester’s
inertia theorem, A and D have the same inertial®, which is easily determined from
D (see Problem 11.2).

The second factorization is that produced by Aasen’s method,

PAPT = LTLT,

where P is a permutation matrix, L is unit lower triangular with first column
e1, and T is tridiagonal. Aasen’s factorization is much less widely used than
block LDLT factorization, but it is mathematically interesting. We describe both
factorizations in this chapter.

A matrix A € R™" is skew-symmetric if AT = —A. In the final section of
this chapter we describe a form of block LDLT factorization specialized to skew-
symmetric matrices.

11.1. Block LDLT Factorization for Symmetric Matrices

If the symmetric matrix A € R®*™ is nonzero, we can find a permutation IT and
an integer s = 1 or 2 so that

r_ s [E CT
nAnT = * {C 5 | (11.2)

10The inertia of a symmetric matrix is an ordered triple {i+,3,40}, where i+ is the number of
positiveeigenvalues, i_ the number of negative eigenvalues, and g the number of zero eigenvalues.

11.1 Brock LDLT FACTORIZATION FOR SYMMETRIC MATRICES 215

with E nonsingular. Having chosen such a IT we can factorize

r [L. o 1[E 0 I, E-\CT
Al _[CE"I In_sHo B—CE—ICTHO Lo, |- (19

Repeating this process recursively on the (n — s) x (n — s) Schur complement
A=B-CE™'CT

yields the factorization (11.1). This factorization method is sometimes called the
diagonal pivoting method, and it costs n3/3 operations (the same cost as Cholesky
factorization of a positive definite matrix) plus the cost of determining the per-
mutations II. It can be thought of as a generalization of Lagrange’s method for
reducing a quadratic form to diagonal form (devised by Lagrange in 1759 and
rediscovered by Gauss in 1823) [857, 1961, p. 371].

We describe three different strategies for choosing the permutations.

11.1.1. Complete Pivoting

Bunch and Parlett [183, 1971] devised the following strategy for choosing II. It
suffices to describe the interchanges for the first stage of the factorization.

Algorithm 11.1 (Bunch-Parlett complete pivoting strategy). This algorithm de-
termines the pivot for the first stage of the symmetric indefinite factorization ap-
plied to a symmetric matrix A € R™*™ using the complete pivoting strategy of
Bunch and Parlett.

a=(1++/17)/8 (= 0.64)
tho = max; j |a;;| =: |ape| (¢ > p), 1 = max; |asi| =: |arr|
if 1 > apo
Use a, as a 1 x 1 pivot (s = 1, IT swaps rows and
columns 1 and 7).

else
Use [app aqu as a 2 x 2 pivot (s = 2, IT swaps rows and
Ggp Gqq
columns 1 and p, and 2 and ¢, in that order).
end

Note that p; is the best 1 x 1 pivot under symmetric permutations and jiq is
the pivot that would be chosen by GE with complete pivoting. This strategy says
“as long as there is a diagonal pivot element not much smaller than the complete
pivot, choose it as a 1 x 1 pivot”, that is, “choose a 1 x 1 pivot whenever possible”.
If the strategy dictates the use of a 2 x 2 pivot then that pivot F is indefinite (see
Problem 11.2).

The parameter « is derived by minimizing a bound on the element growth. For
the following analysis we assume that the interchanges have already been done. If
s =1 then

~ 1 ~ u3 1
aij = bij — Cilacl_j = |aij| < uo + 'E < (1 + E)y,o.

216 SYMMETRIC INDEFINITE AND SKEW-SYMMETRIC SYSTEMS

Now consider the case s = 2. The (i,7) element of the Schur complement
A=B-CE-'CTis

@y =byj—[ca c2] BT [Z;] : (11.4)

Now

-1
E-1_ |f11 €12 _ 1 €22 —€12
€21 €22 det(E) | —e21 en
and, using the symmetry of F,
2 2
det(E) = ej1€20 — 6%1 = €11€22 — /L(Z) < ,Uv% - /lg < (a - 1):“'0'

Assuming o € (0,1), we have |det(E)| > (1 — a?)u3. Thus

1 a 1
E < — - .
B S T et {1 a}

Since |¢;;| < po, we obtain from (11.4)

2u+am3=(
(1 —a?)uo

To determine o we equate the maximum growth for two s = 1 steps with that

for one s = 2 step:
1\° 2
1+—) =1+ ,
a l—-a

which reduces to the quadratic equation 4a? —a — 1 = 0. We require the positive

root
V17
azi%r—zam.

The analysis guarantees the growth factor bound p, < (1+a~1)*"! = (2.57)"" 1,
where p, is defined in the same way as for GE. This bound is pessimistic, how-
ever; a much more detailed analysis by Bunch [175, 1971] shows that the growth
factor is no more than 3.07(n — 1)%446 times larger than the bound (9.14) for LU
factorization with complete pivoting—a very satisfactory result. Strictly speaking,
bounding the growth factor bounds only ||D||, not [|L|. But it is easy to show
that for s = 1 and 2 no element of CE~! exceeds max{1/a,1/(1 —)} in absolute
value, and so ||L|| is bounded independently of A.

Since complete pivoting requires the whole active submatrix to be searched at
each stage, it needs up to n%/6 comparisons, and so the method is rather expensive.

~ 2
lai;| < po + 1+——> Lho-

l—«o

11.1.2. Partial Pivoting

Bunch and Kaufman (181, 1977] devised a pivoting strategy that requires only
O(n?) comparisons. At each stage it searches at most two columns and so is
analogous to partial pivoting for LU factorization. The strategy contains several
logical tests. As before, we describe the pivoting for the first stage only. Recall
that s denotes the size of the pivot block.

11.1 BLock LDLT FACTORIZATION FOR SYMMETRIC M ATRICES 217

Algorithm 11.2 (Bunch-Kaufman partial pivoting strategy). This algorithm de-
termines the pivot for the first stage of the symmetric indefinite factorization ap-
plied to a symmetric matrix A € R™*™ using the partial pivoting strategy of Bunch
and Kaufman.

a=(1+V17)/8 (= 0.64)
w1 = maximum magnitude of any subdiagonal entry in column 1.
If w; = 0 there is nothing to do on this stage of the factorization.
if [a11] > aw;
(1) Useaj; asalx1pivot (s=1, 0 =1I).
else
r = row index of first (subdiagonal) entry of maximum
magnitude in column 1.
w, = maximum magnitude of any off-diagonal entry in
column 7.
if |an|wr > aw}
(2) Use a;; asa 1 x 1 pivot (s =1, [T =1).
else if |a,r| > aw,
(3) Use a,- as a 1 x 1 pivot (s = 1, IT swaps rows and
columns 1 and 7).
else
(4) Use [au arl} as a 2 x 2 pivot (s = 2, IT swaps
arl Qrr
rows and columns 2 and r).
end
end

To understand the Bunch—-Kaufman pivoting strategy it helps to consider the
matrix

"~ ai; arl(wl) N
ar(w1) ... Qrp cee Gip(we)
H
air(wr)

and to note that the pivot is one of a1;, a,-r, and [Z: Z:]

The parameter « is derived by element growth considerations. We consider
each of the four cases in the algorithm in turn, noting that for cases (1) and (2)
the elements of the Schur complement are given by!?

Eiij = Q45 — w
an

Case (1):
- 1 1
as;] < lag;| + Elaljl < {1+ Hgg.x)az‘ji-

11 We commit a minor abuse of notation, in that in the rest of this section a;; should really be
Gi—1,j-1 (§=1) or ;2,2 (s = 2).

218 SYMMETRIC INDEFINITE AND SKEW-SYMMETRIC SYSTEMS

Case (2): Using symmetry,

1
] < o + 2 <lol + 2 < (14 2) maxa

Case (3): The original a,, is now the pivot, and |a,.| > aw,, so
1
il <o+ 12 ol < (14) moas

Case (4): This is where we use a 2 x 2 pivot, which, after the interchanges, is
E= (HTAH)(l:Z, 12) = [011 arl] Now

ar1 arrl’

|det(E)| = |a2; — an1arr| > w? — |an|aw, > w? — a(aw?) = wi(1 - o?).

The elements of the Schur complement A=B-CE-CT are given by

Qi = bi; — det(E)"Man air] [Grr —arl} [aﬂ} ,

—Gr1 Q411 Qjr

SO

|@ij] < 1bij| + (Wi(1 —a®)) 7 [wn ‘”r][awr -] [wl}

wi e Wr
20w, (1+ a) 2w
< |b; 1T—= . = <
|bi;] + 221 —a?)]szf—i—l_a_(1+1_a>n113x|a“}

This analysis shows that the bounds for the element growth for s =1 and s = 2
are the same as the respective bounds for the complete pivoting strategy. Hence,
using the same reasoning, we again choose a = (1 + /17)/8.

The growth factor for the partial pivoting strategy is bounded by (2.57)" 1.
As for GEPP, large growth factors do not seem to occur in practice. But unlike for
GEPP, no example is known for which the bound is attained; see Problem 11.10.

To explain the numerical stability of partial pivoting we need the following
general result on the stability of block LDLT factorization.

Theorem 11.3. Let block LDLT factorization with any pivoting strategy be ap-
plied to a symmetric matriz A € R™"*™ to yield the computed factorization PAPT ~
LDLT, where P is a permutation matric and D has diagonal blocks of dimension
1 or 2. Let T be the computed solution to Ax = b obtained using the factorization.
Assume that for all linear systems Ey = f involving 2 x 2 pivots E the computed
solution T satisfies

(E+ AE)j = f, |AE| < (cu + O(u?))|E], (11.5)
where ¢ is a constant. Then
P(A+ AA)PT =LDLT, (A+ AA)z =

where A
|AA;| < p(n)u(|A| + PT|L||D||LT|P) + O(u?), i=1:2,

with p a linear polynomial. g

11.1 BLock LDLT FACTORIZATION FOR SYMMETRIC MATRICES 219

For partial pivoting the condition (11.5) can be shown to hold for the two most
natural ways of solving the 2 x 2 systems: by GEPP and by use of the explicit
inverse (as is done in LINPACK and LAPACK); see Problem 11.5. Thus Theo-
rem 11.3 is applicable to partial pivoting, and the question is whether it implies
backward stability, that is, whether the matrix |L||D||L?| is suitably bounded
relative to A. If the elements of L were bounded by a constant then the inequal-
ity || |LIID)| LT | loo < ||Lllool|Dllool|LT||co Would immediately yield a satisfactory

bound. However, for partial pivoting L is unbounded, as we now show by example.
For € > 0, partial pivoting produces the factorization, with P = I,

0 ¢ O 1 0 « 1 0 1/e
A=]e 0 1|=]|0 1 e 0 1 0 |=LDLT. (11.6)
01 1 /e 0 1 1 1

As € — 0, || L{lool| Dlloo ILT loo/ | Alloc — 00. Nevertheless, it can be shown that
for every A the matrix |L||D||LT| satisfies the bound [608, 1997)

HZIDILT| flar < 36npnl|Alla,

where [[A]|ar = max; ; |a;;| and pyn is the growth factor. The normwise stability of
the Bunch-Kaufman partial pivoting strategy can be summarized as follows.

Theorem 11.4. Let A € R™*™ be symmetric and let T be a computed solution to
the linear system Az = b produced by block LDLT factorization with the Bunch—
Kaufman partial pivoting strategy, where linear systems involving 2 x 2 pivots are
solved by GEPP or by use of the explicit inverse. Then

(A+A4)2=b, [AA]ly < p(n)pnul Allm + O,

where p is a quadratic. O

11.1.3. Rook Pivoting

For solving linear systems, Theorem 11.4 shows that block LDLT factorization with
the Bunch-Kaufman partial pivoting strategy has satisfactory backward stability.
But for certain other applications the possibly large L factor makes the factor-
ization unsuitable. An example is a modified Cholesky factorization algorithm of
Cheng and Higham [228, 1998], of interest in optimization and for constructing
preconditioners. In this algorithm a block LDLT factorization of a symmetric A
is computed and then the D factor is perturbed to make it positive definite. The
perturbation of D corresponds to a perturbation of A up to ||L||? times larger,
so it is essential in this application that ||L|| is of order 1. A small ||L|| can be
ensured by a symmetric form of rook pivoting (cf. §9.1) proposed by Ashcraft,
Grimes, and Lewis [38, 1998, §2.4]. This pivoting strategy is broadly similar to
partial pivoting, but it has an iterative phase.

220 SYMMETRIC INDEFINITE AND SKEW-SYMMETRIC SYSTEMS

Algorithm 11.5 (symmetric rook pivoting). This algorithm determines the pivot
for the first stage of the symmetric indefinite factorization applied to a symmetric
matrix A € R™*" using the rook pivoting strategy of Ashcraft, Grimes, and Lewis.

a=(1+V17)/8 (= 0.64)
w; = maximum magnitude of any subdiagonal entry in column 1.
If w; = 0 there is nothing to do on this stage of the factorization.
if |ay1] > aw

Use aj; asa 1 x 1pivot (s =1, II =1).

else
i=1
repeat
r = row index of first (subdiagonal) entry of maximum
magnitude in column q.
w, = maximum magnitude of any off-diagonal entry in
column 7.
if larr| > aw,
Use a,r as a 1 x 1 pivot (s =1, IT swaps rows and
columns 1 and 7).
else if w; = w,
Use [aii ari] as a 2 x 2 pivot (s = 2, IT swaps
Qri Qrr
rows and columns 1 and ¢, and 2 and r).
else
1=T,w; =W,
end
until a pivot is chosen
end

The repeat loop in Algorithm 11.5 searches for an element a.; that is simulta-
neously the largest in magnitude in the rth row and the ith column, and it uses
this element to build a 2 x 2 pivot; the search terminates prematurely if a suitable
1 x 1 pivot is found. Note that the pivot test in case (2) of the partial pivoting
strategy (Algorithm 11.2) is omitted in Algorithm 11.5—this is essential to obtain
a bounded L [38, 1998].

Since the value of w; increases strictly from one pivot step to the next, the
search in Algorithm 11.5 takes at most n steps. The overall cost of the searching
is therefore between O(n?) and O(n3) comparisons. Matrices are known for which
the entire Schur complement must be searched at each step, in which case the
cost is O(n3) comparisons. However, probabilistic results (very similar to those
for nonsymmetric rook pivoting) and experimental evidence suggest that usually
only O(n?) comparisons are required [38, 1998].

The following properties are readily verified, using the property that any 2 x 2

pivot satisfies
-1
Qi Ory < 1 a 1
Qri Qrr - wr(l — az) 1 al

1. Every entry of L is bounded by max{1/(1 — a),1/a} =~ 2.78.

11.1 BrLock LDLT FACTORIZATION FOR SYMMETRIC MATRICES 221

2. Every 2 x 2 pivot block D;; satisfies k2(D;;) < (1 + a)/(1 — @) = 4.56.

3. The growth factor for the factorization satisfies the same bound as for partial
pivoting. Also, Theorem 11.4 holds.

At the cost of a worst case O(n?) searching overhead, the symmetric rook pivot-
ing strategy thus gives an L factor with elements of order 1 and produces well-
conditioned 2 x 2 blocks of D.

As noted by Cheng [227, 1998], we can also derive a forward error bound
analogous to (9.23) in §9.7. For any pivoting strategy satisfying the conditions of
Theorem 11.3 we have

”xn;_nf lee < pnyu(cond(4,) + 147 |PT ZIBIETIPI.e) + O(u?)
< p(n)ucond(4) cond(|D||LT]) + O(u?). (11.7)

The term cond(|D||LT|) is unbounded for partial pivoting but is bounded expo-
nentially in n for rook pivoting, in view of properties 1 and 2 above. In theory,
then, rook pivoting seems more likely than partial pivoting to produce a cond(A)-
bounded forward error and hence to be insensitive to poor row (and hence column)
scaling of A.

11.1.4. Tridiagonal Matrices

How should we solve a symmetric tridiagonal linear system Ax = 4?7 Most com-
monly GEPP is used, which unfortunately destroys the symmetry and so does not
reveal the inertia. A factorization PA = LU is obtained, where L has at most
one nonzero below the diagonal in each column and U has upper bandwidth 2
(ui; =0 for j > i+ 2). Block LDLT factorization using partial, rook, or complete
pivoting exploits the symmetry, but these pivoting strategies do not preserve the
bandwidth.

Bunch [177, 1974] suggested computing a block LDLT factorization without
interchanges, with a particular strategy for choosing the pivot size (1 or 2) at each
stage of the factorization. Bunch’s strategy for choosing the pivot size is fully
defined by describing the choice of the first pivot.

Algorithm 11.6 (Bunch’s pivoting strategy). This algorithm determines the pivot
size, s, for the first stage of block LDLT factorization applied to a symmetric tridi-
agonal matrix A € R™**".

a=(v5-1)/2=0.62
o =max{|a;j| : 4,7 =1:n} (compute once, at the start of the
factorization)
if olai1| > aa%l
s=1
else
§=2
end

222 SYMMETRIC INDEFINITE AND SKEW-SYMMETRIC SYSTEMS

The result is a factorization
A=LDILT, (11.8)

where L is unit lower triangular and D is block diagonal with each diagonal block

having dimension 1 or 2. The value of a is derived in a similar way as for the

Bunch-Kaufman partial pivoting strategy, by equating growth bounds. The inertia

of A is the same as that of D, which can be read from the (block) diagonal of D,

since any 2x 2 block can be shown to have one negative and one positive eigenvalue.
The numerical stability of this method is described in the next result.

Theorem 11.7. Let block LDLT factorization with the pivoting strategy of Algo-
rithm 11.6 be applied to a symmetric tridiagonal matriz A € R™ ™ to yield the
computed factorization A =~ LDLT, and let T be the computed solution to Az =b
obtained using the factorization. Assume that all linear systems Ey = f involving
2 x 2 pivots E are solved by GEPP or by use of the explicit inverse. Then

A+ AA;=LDLT, (A+AA)T=b,
where
|AAilIm < cullAllar + O(?), i=1:2 (11.9)
with ¢ a constant. O
Theorem 11.7 shows that block LDLT factorization with the pivoting strategy
of Algorithm 11.6 is a perfectly normwise backward stable way to factorize a
symmetric tridiagonal matrix A and to solve a linear system Az = b. Block LDLT

factorization therefore provides an attractive alternative to GEPP for solving such
linear systems.

11.2. Aasen’s Method
Aasen’s method [1, 1971] factorizes a symmetric matrix A € R**" as
PAPT =LTLT,
where L is unit lower triangular with first column e;,
‘B ’
B az B2
T=
/@n—l
Bn-1 Qn

is tridiagonal, and P is a permutation matrix.

To derive Aasen’s method, we initially ignore interchanges and assume that
the first ¢ — 1 columns of T" and the first 7 columns of L are known. We show how
to compute the ith column of T" and the (i +1)st column of L. A key role is played
by the matrix

H=T1LT, (11.10)

11.2 AASEN’S METHOD 223

which is easily seen to be upper Hessenberg. Equating ith columns in (11.10) we
obtain

i % - i aili + Biliz
—2 11; Bilia + a2liz + B2liz
? -
hi1i L _._1 Bi—alii—o + ai_1liio1 + Bica
hi | =T | = Bi-1liic1 + o . (11.11)
hit1i 0 Ps
o] A 0 :

We use an underline to denote an unknown quantity to be determined.

The first ¢ — 1 equations in (11.11) are used to compute Ay;, ..., h;_1;. The
next two equations contain two unknowns each so cannot yet be used. The (z,1)
and (i + 1,7) elements of the equation A = LH give

i—1
i =Y lijhji + hs, (11.12)
j=1
1
Qi1 = Z liv1,5hji + hiv1, (11.13)
=1

which we solve for h;; and h;+1,;. Now we can return to the last two nontrivial
equations of (11.11) to obtain @; and ;. Finally, the ith column of the equation
A = LH yields
it+1
aki -—Zlkjhji, k=1i+2:n,
j=1

which yields the elements below the diagonal in the (i + 1)st column of L:

i
aki = 351 lkshyi

, k=i+2:n. (11.14)
hiv1:

lkiv1 =

The factorization has thereby been advanced by one step.

The operation count for Aasen’s method is the same as for block LDLT factor-
ization.

To ensure that the factorization does not break down, and to improve its
numerical stability, interchanges are incorporated. Before the evaluation of (11.13)
and (11.14) we compute vk = ax; — 2_>_; lkjhji, k = i+ 1:n, find 7 such that
|vr| = max{ |vk| : k = i+1:n}, and then swap v;+1 and v, and make corresponding
interchanges in A and L. This partial pivoting strategy ensures that |l;;| < 1 for
12>].

To solve a linear system Az = b using the factorization PAPT = LTLT we
solve in turn

Lz=Pb, Ty=2 LTw=y, z=Puw. (11.15)

224 SYMMETRIC INDEFINITE AND SKEW-SYMMETRIC SYSTEMS

The system Ty = z has a symmetric tridiagonal coefficient matrix that is indefinite
in general. It is usually solved by GEPP, but the symmetry-preserving method
of §11.1.4 can be used instead. The next result gives a backward error bound for
Aasen’s method; for simplicity, pivoting is ignored, that is, A is assumed to be
“pre-pivoted”.

Theorem 11.8. Let A € R™*" be symmetric and suppose Aasen’s method pro-
duces computed factors L T and a computed solution T to Az =b. Then

(A+DA)E=b, |AA| < Vo1 [LITIET] + Yoy LUTT | MT LT,
where T ~ MU is the computed factorization produced by GEPP. Moreover,

1AAlleo < (n— 1)2’715n+25“f“oo~ a

Theorem 11.8 shows that Aasen’s method is a backward stable method for
solving Az = b provided that the growth factor

maxi,;j [tij]

maxi,j la; 51
is not too large.
Using the fact that the multipliers in Aasen’s method with partial pivoting are

bounded by 1, it is straightforward to show that if max; j|a;;| = 1 then T has a
bound illustrated for n = 5 by

1 1
1 1 2
|T| < 2 4 8
8 16 32
32 64
Hence
an4n_2

Whether this bound is attainable for n > 4 is an open question. Cheng [227,
1998] reports experiments using direct search optimization in which he obtained
growth of 7.99 for n = 4 and 14.61 for n = 5, which are to be compared with the
corresponding bounds of 16 and 64.

11.2.1. Aasen’s Method Versus Block LDLT Factorization

While block LDLT of a symmetric matrix using the Bunch-Kaufman partial piv-
oting strategy is implemented in all the major program libraries, the only library
we know to contain Aasen’s method is the IMSL Fortran 90 library [546, 1997].
A comparison of the two methods in the mid 1970s found little difference between
them in speed [87, 1976], but no thorough comparison on modern computer ar-
chitectures has been published. See [38, 1998] for some further comments. The
greater popularity of block LDLT factorization may be due to the fact that it is
generally easier to work with a block diagonal matrix with blocks of size at most
2 than with a tridiagonal one.

11.3 Brock LDLT FACTORIZATION FOR SKEW-SYMMETRIC MATRICES 225

Note that since |l;;] < 1 for Aasen’s method with pivoting, the method is
superior to block LDLT factorization with partial pivoting for applications in which
a bounded L is required.

11.3. Block LDLT Factorization for Skew-Symmetric Matri-
ces

Several properties follow from the definition of a skew-symmetric matrix A €
R™*™: the diagonal is zero, the eigenvalues come in pure imaginary complex con-
jugate pairs, and the matrix is singular if n is odd. Because of the zero diagonal,
a skew-symmetric matrix does not usually have an LU factorization, even if sym-
metric pivoting PAPT (which preserves skew-symmetry) is allowed. To obtain a
factorization that always exists and respects the skew-symmetry we must turn to
a block LDLT factorization. We consider a factorization

PAPT = LDILT, (11.16)

where L is unit lower triangular and D is block diagonal with skew-symmetric
diagonal blocks of dimension 1 or 2.
To begin the factorization we choose a permutation II so that

; ngT 0, s=1,
mAnt = * [c B] E={[0 -en] _,
s €21 0 3 = 4

where we take s = 1 and IT = I if the first column of A is zero, or else s = 2,
in which case IT can be chosen so that E is nonsingular (we assume that A is
nonzero). If s =1 there is nothing to do; otherwise we factorize

r_[I 0][E 0 I, E-'CT
nAn _[CE‘l I,,_SHO B+CE—ICTH0 Ins |°

The Schur complement B + CE~'CT (note the “+”) inherits skew-symmetry
from A, and so the process can be repeated recursively, yielding on completion the
factorization (11.16), with D having diagonal blocks 0 or of the form [di+? . _d“;)“]

with d;41,; # 0. Bunch [178, 1982] proposed the following partial pivoting-type
pivoting strategy.

Algorithm 11.9. (Bunch’s pivoting strategy) This algorithm determines the
pivot for the first stage of the block LDLT factorization of a skew-symmetric matrix
A € R™*™ using the pivoting strategy of Bunch.

if |A(2: 7, 1)||loo =0
Use aj; asa 1 x 1 pivot (s =1, IT = I, and no elimination required).

else
la'PQI = max(l[A(2:n: 1)”00’ ||A(2:na2)“00) (p> q)
Use aO 91| 582 x2 pivot (s = 2, IT swaps rows and
pg

columns 1 and ¢, and 2 and p, in that order).
end

226 SYMMETRIC INDEFINITE AND SKEW-SYMMETRIC SYSTEMS

The numerical stability of the factorization is much easier to analyse than for
the symmetric indefinite factorizations. It suffices to consider the 2 x 2 pivots,
since 1 x 1 pivots involve no computation. We define A := ITAITT. Note first that
arow of CE~! has the form

[an an][_l(/)a?l 1/321]2[_01‘2/021 ai1/an .

The pivoting strategy ensures that both these elements are bounded in modulus
by 1, so the same is therefore true for every element of L. Next, note that an
element of S = B+ CE~!CT has the form

. ;2 ail
§i—2j-2 = Qi — a; a;1 + 5;1_ aj2-

It follows that |s;;| < 3max;j |a;j|. Since the number of 2 x 2 pivots is at most
(n — 2)/2, whether n is odd or even, the growth factor for the whole elimination
satisfies
(k
max; k |a;;

)
| < (V3)"? & (1.73) 2.

max;,; |as;]
This bound is smaller than that for partial pivoting on a general matrix! In
practice, the growth factor is usually much smaller than this bound.

The conclusion is that block LDLT factorization with Bunch’s pivoting strategy
has excellent numerical stability properties. It is, of course, possible to incorporate
rook pivoting or complete pivoting into the factorization to obtain even smaller
worst-case growth factor bounds.

This factorization is not applicable to complex skew-Hermitian matrices (A =
—A*), because they do not have zero diagonal. Bunch [178, 1982] suggests applying
one of the block LDLT factorizations for Hermitian indefinite matrices to i A.

11.4. Notes and References

A major source of symmetric indefinite linear systems is the least squares problem,
because the augmented system is symmetric indefinite; see Chapter 20. Other
sources of such systems are interior methods for solving constrained optimization
problems (see Forsgren, Gill, and Shinnerl [421, 1996], S. J. Wright [1262, 1997],
and M. H. Wright {1259, 1992]) and linearly constrained optimization problems
(see Gill, Murray, Saunders, and M. H. Wright [485, 1991] and Nocedal and S. J.
Wright (894, 1999]).

The idea of using a block LDLT factorization with some form of pivoting
for symmetric indefinite matrices was first suggested by Kahan in 1965 [183,
1971]. Bunch and Parlett {183, 1971] developed the complete pivoting strategy
and Bunch [175, 1971] proved its stability. Bunch [177, 1974] discusses a rather
expensive partial pivoting strategy that requires repeated scalings. Bunch and
Kaufman [181, 1977] found the efficient partial pivoting strategy presented here,
which is the one now widely used, and Bunch, Kaufman, and Parlett [182, 1976]
give an Algol code implementing the block LDLT factorization with this pivoting
strategy. Dongarra, Duff, Sorensen, and Van der Vorst [349, 1998, §5.4.5] show

11.4 NOTES AND REFERENCES 227

how to develop a partitioned version of the block LDLT factorization with partial
pivoting.

Liu [794, 1987] shows how to incorporate a threshold into the Bunch-Kaufman
partial pivoting strategy for sparse symmetric matrices; see also Duff et al. (361,
1991). The partial pivoting strategy and variants of it described by Bunch and
Kaufman [181, 1977] do not preserve band structure, but the fill-in depends on the
number of 2 x 2 pivots, which is bounded by the number of negative eigenvalues
(see Problem 11.2). Jones and Patrick [676, 1993], [677, 1994] show how to exploit
this fact.

The complete and partial pivoting strategies of Bunch et al. use a fixed number
of tests to determine each pivot. Another possibility is to prescribe growth bounds
corresponding to 1 x 1 and 2 x 2 pivots and to search in some particular order for
a pivot satisfying the bound. Fletcher [415, 1976] uses this approach to define a
pivoting strategy that is very similar to rook pivoting and which usually requires
only O(n?) operations. Duff, Reid, and co-workers apply the same approach to
the block LDLT factorization for sparse matrices, where sparsity considerations
also influence the choice of pivot [366, 1979], [361, 1991]; their Fortran codes
MAZ27 [364, 1982] and MA47 [365, 1995] implement the methods.

The backward error results Theorem 11.3 for block LDLT factorization and
Theorem 11.4 for partial pivoting are from Higham [608, 1997], who observed that
despite the widespread use of partial pivoting no proof of stability had been given.

Gill, Murray, Ponceleén, and Saunders [483, 1992] show how for sparse, sym-
metric indefinite systems the block LDLT factorization can be used to construct
a (positive definite) preconditioner for an iterative method.

The work of Ashcraft, Grimes, and Lewis (38, 1998] was motivated by an
optimization problem in which solving symmetric linear systems using the Bunch-
Kaufman partial pivoting strategy led to convergence difficulties, which were traced
to the fact that ||L|| is unbounded. The theme of [38] is that pivoting strategies
such as rook pivoting that bound ||L|| lead to higher accuracy. A class of linear
systems is given in [38] where rook pivoting provides more accurate solutions than
partial pivoting, and the experimental results can be partially explained using the
bound (11.7), as shown by Cheng [227, 1998].

Theorem 11.7 is from Higham (613, 1999

Aasen [1, 1971] states without proof a backward error bound for the factoriza-
tion produced by his method. Theorem 11.8 and a related bound for the factor-
ization are derived by Higham [612, 19gg).

Dax and Kaniel [298, 1977] propose computing a factorization PAPT = LDLT
for symmetric indefinite matrices by an extended form of Gaussian elimination
in which extra row operations are used to “build up” a pivot element prior to
the elimination operations; here, L is unit lower triangular and D is diagonal. A
complete pivoting strategy for determining the permutation P is described in [298,
1977], and partial pivoting strategies are described in Dax [296, 1982].

Bunch (176, 1971] shows how to scale a symmetric matrix so that in every
nonzero row and column the largest magnitude of an element is 1.

228 SYMMETRIC INDEFINITE AND SKEW-SYMMETRIC SYSTEMS

11.4.1. LAPACK

Driver routines xSYSV (simple) and xSYSVX (expert) use block LDLT factorization
with partial pivoting to solve a symmetric indefinite system of linear equations
with multiple right-hand sides. For Hermitian matrices the corresponding routines
are xHESV (simple) and xHESVX (expert). (Variants of these routines for packed
storage have names in which SP replaces SY and HP replaces HE.) The expert
drivers incorporate iterative refinement, condition estimation, and backward and
forward error estimation. The factorization is computed by the routine xSYTRF or
xHETRF.

Problems

11.1. Explain why if A is nonzero a nonsingular pivot E in (11.2) can be found.

11.2. Consider block LDLT factorization applied to a symmetric matrix. Show
that with the symmetric partial pivoting, rook pivoting, or complete pivoting
strategies any 2 x 2 pivot is indefinite. Hence give a formula for the inertia in
terms of the block sizes of the block diagonal factor. Show how to avoid overflow
in computing the inverse of a 2 x 2 pivot.

11.3. Describe the effect of applying the block LDLT factorization with partial
pivoting to a 2 x 2 symmetric matrix.

11.4. What factorization is computed if the block LDLT factorization with partial
pivoting is applied to a symmetric positive definite matrix?

11.5. (Higham [608, 1997]) Show that the condition (11.5) is satisfied for the
2 x 2 pivots from partial pivoting if the system is solved by GEPP or by use of
the explicit inverse.

11.6. Show that for matrices of the form generated by the MATLAB code

A = zeros(n);

A(n,1) = 2;

for i = 2:n-1
A(i+1,i) = n-i+2;

end
A=A+ A%
A(2,2) = n;

rook pivoting (Algorithm 11.5) requires the maximum number of comparisons on
each stage of the factorization [38, 1998].

11.7. (Sorensen and Van Loan; see [349, 1998, §5.3.2]) Suppose the partial pivot-
ing strategy in Algorithm 11.2 is modified by redefining

wr = [[AG, 7)o

(thus “w2®* = max(w°'d, Ja,.|)”). Show that the same growth factor bound holds
as before and that for a positive definite matrix no interchanges are done and only
1 x 1 pivots are used.

PROBLEMS 229

11.8. For the matrix A in (11.6) what are the factorizations produced by block
LDLT with rook pivoting and complete pivoting?

LA

11.9. A matrix of the form
B -G

where H € R™*™ and G € R™*™ are symmetric positive definite, has been called
a symmetric quasidefinite matriz by Vanderbei [1186, 1995]. Show that (a) A is
nonsingular, (b) for any permutation 7, ITTAIT has an LU factorization, (c) AS
is nonsymmetric positive definite, where S = diag(f,—I). (This last property
reduces the question of the stability of an LDLT factorization of A to that of the
stability of the LU factorization of a nonsymmetric positive definite matrix, for
which see §10.4. This reduction is pointed out and exploited by Gill, Saunders,
and Shinnerl [487, 1996].)

11.10. (RESEARCH PROBLEM) Investigate the attainability of the growth factor
bounds for block LDLT factorization with

(a) partial pivoting,

(b) rook pivoting,

(c) Bunch’s partial pivoting strategy for skew-symmetric matrices.

Similarly, investigate the attainability of the growth factor bound for Aasen’s
method.

Chapter 12
Iterative Refinement

The ILLIAC’s memory is sufficient to accommodate a system of 39 equations
when used with Routine 51.

T he additional length of Routine 100 restricts to 37

the number of equations that it can handle.

With 37 equations the operation time of Routine 100 is about

4 minutes per iteration.

— JAMES N. SNYDER, On the Improvement of the Solutions to a Set of
Simultaneous Linear Equations Using the ILLIAC (1955)

In a short mantissa computing environment
the presence of an iterative improvement routine can
significantly widen the class of solvable Az = b problems.

— GENE H. GOLUB and CHARLES F. VAN LOAN,
Matrix Computations (1996)

Most problems involve inexact input data and
obtaining a highly accurate solution to an
imprecise problem may not be justified.

— J. J. DONGARRA, J. R. BUNCH, C. B. MOLER, and G. W. STEWART,
LINPACK Users’ Guide (1979)

It is shown that even a single iteration of
iterative refinement in single precision is enough to
make Gaussian elimination stable in a very strong sense.

— ROBERT D. SKEEL, Iterative Refinement Implies Numerical Stability
for Gaussian Elimination (1980)

231

232 ITERATIVE REFINEMENT

Iterative refinement is an established technique for improving a computed solution
Z to a linear system Az = b. The process consists of three steps:

1. Compute r = b — AZ.
2. Solve Ad = r.
3. Update y =T +d.
(Repeat from step 1 if necessary, with Z replaced by y.)

If there were no rounding errors in the computation of r, d, and y, then y would be
the exact solution to the system. The idea behind iterative refinement is that if r
and d are computed accurately enough then some improvement in the accuracy of
the solution will be obtained. The economics of iterative refinement are favourable
for solvers based on a factorization of A, because the factorization used to compute
T can be reused in the second step of the refinement.

Traditionally, iterative refinement is used with Gaussian elimination (GE), and
r is computed in extended precision before being rounded to working precision.
Iterative refinement for GE was used in the 1940s on desk calculators, but the
first thorough analysis of the method was given by Wi